

Gesamtkatalog Herforder-Elektromotoren-Werke

Inhalt

Planungsteil Motoren Baureihe	R	11
Inhalt		11
Übersicht Fertigungsprogr	ramm	11
Grundierung / Lackierung		12
Wirkungsgrade		13
Normen und Vorschriften.		15
Mechanische Ausführung		16
Bauformen		16
Schutzarten		17
Gehäuseausführungen		17
Flanschvarianten		18
Lagerung		19
Wellenenden		21
Radial- und Axialkräfte		22
Klemmenkastenlage		23
Kabeleinführungen im Kle	mmenkasten	24
Geräusche		25
Schwingungen		25
Elektrische Ausführung		26
Leistung, Spannung und F	Frequenz	26
Erwärmung und Wärmekla	assen	27
Belastbarkeit		27
Drehrichtung		27
Erdungs- und Schutzleiter	ranschluss	27
Betrieb an 60 Hz-Netzen .		28
Betrieb am Frequenzumri	chter	28
Motorschutz		31
Aufstellungshöhe und Kül	nlmitteltemperatur	32
Kühlung (Belüftung)		32
Stillstandsheizung		33
Drehstrommotoren Baureihe R		34
2-polig 400V-50Hz IC 411	l	34
2-polig 460V-60Hz IC 411	l	35
4-polig 400V-50Hz IC 411	l	36
4-polig 460V-60Hz IC 411	l	37
6-polig 400V-50Hz IC 411		38

Datum: 10.06.2025 Version: 2.6

	6-polig 460V-60Hz IC 411	39
	8-polig 400V-50Hz IC 411	40
	8-polig 460V-60Hz IC 411	41
	12-polig 400V-50Hz IC 411	42
	12-polig 460V-60Hz IC 411	42
5	Standard-Polumschaltbare Motoren	43
	4-2 polig 400V-50Hz Δ/YY IC 411	43
	6-2 polig 400V-50Hz Y/Y IC 411	44
	8-2 polig 400V-50Hz Y/Y IC 411	45
	12-2 polig 400V-50Hz Y/Y IC 411	46
	6-4 polig 400V-50Hz Y/Y IC 411	47
	8-4 polig 400V-50Hz Δ/YY IC 411	48
	8-6 polig 400V-50Hz Y/Y IC 411	49
	12-6 polig 400V-50Hz Δ/YY IC 411	50
5	Standard-Polumschaltbare Motoren, Lüfterantriebe	51
	4-2 polig 400V-50Hz Y/YY IC 411 Lüfter	51
	6-4 polig 400V-50Hz Y/Y IC 411 Lüfter	52
	8-4 polig 400V-50Hz Y/YY IC 411 Lüfter	53
	8-6 polig 400V-50Hz Y/Y IC 411 Lüfter	54
	12-6 polig 400V-50Hz Y/YY IC 411 Lüfter	55
F	Reluktanzmotoren	56
	Mechanische Ausführung	56
	Elektrische Ausführung	56
	Reluktanzmotor am Frequenzumrichter	57
	2-polig 400V-50Hz IC 411 Reluktanzmotor	58
	4-polig 400V-50Hz IC 411 Reluktanzmotor	59
	6-polig 400V-50Hz IC 411 Reluktanzmotor	60
N	Maßblätter zu Baureihe R	61
	Passungen und Toleranzen	62
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3	63
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B3	64
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5	65
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B5	66
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B14	67
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B14	68
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B35	69
	Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B35	70

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B34	71
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B34	72
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: IP 54 – IP 55 / Bauform IM B3	73
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 56 / Bauform IM B3	74
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: IP 54 – IP 55 / Bauform IM B5	75
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 56 / Bauform IM B5	76
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: IP 54 – IP 55 / Bauform IM B14	77
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 56 / Bauform IM B14	78
Einphasenmotoren	79
Einphasenmotoren	80
Einphasenmotoren mit Betriebskondensatoren, Typ REBK	80
Spannung und Frequenz	80
Drehsinn	80
Einphasenmotoren mit Anlauf- und Betriebskondensatoren, Typ REBK AR / FKS	81
Kondensatoren	81
Einphasenmotoren mit Betriebskondensator	82
2-polig 400V-50Hz IC 411	82
4-polig 400V-50Hz IC 411	82
Einphasenmotoren mit Anlauf- und Betriebskondensator	83
2-polig 400V-50Hz IC 411	
4-polig 400V-50Hz IC 411	83
Maßblätter zu Einphasenmotoren mit Betriebskondensator	84
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3	84
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5	85
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B14	86
Maßblätter zu Einphasenmotoren mit Anlauf- und Betriebskondensator	87
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3	87
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5	88
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B14	89
Bremsmotoren	
Bremsmotoren	91
Elektromagnetisch gelüftete Federkraftbremse Typ B	92
Spannung und Schaltungsart	93
Schaltzeiten	94
Technische Daten (für Standard-Bremse Typ B)	
Bremsmotoren-Leistungsdaten	95
Bremsmomentenreduzierung	96

Datum: 10.06.2025 Version: 2.6

Schutzart	96
Wartung	97
Steuerung von Antrieben für hohe Schalthäufigkeit	97
Sonderausführungen	98
Technische Daten zu Bremsmotoren	99
2-polig 400V-50Hz IC 411	99
2-polig 460V-60Hz IC 411	100
4-polig 400V-50Hz IC 411	101
4-polig 460V-60Hz IC 411	102
6-polig 400V-50Hz IC 411	103
6-polig 460V-60Hz IC 411	104
Maßblätter zu Bremsmotoren	105
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3	105
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5	106
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B14	107
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B35	108
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B34	109
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 54 / Bauform IM B3	110
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 54 / Bauform IM B5	111
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 54 / Bauform IM B14	112
Bremsmotoren mit Doppelbremse für Bühnentechnik	113
Bremsmotoren für Bühnentechnik	114
Technische Daten zu Bremsmotoren für Bühnentechnik	115
4-polig 400V-50Hz IC 410 unbelüftet S3-40%	115
Maßblätter zu Bremsmotoren für Bühnentechnik	116
Baugröße: 71 – 180 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B3 .	116
Baugröße: 71 – 180 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B5 .	117
Baugröße: 71 – 180 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B14	118
Drehfeldmagnetmotoren	119
Drehfeldmagnetmotoren	120
Schaltung	120
Drehmomentänderung	121
Sonderausführung	121
Technische Daten zu Drehfeldmagnetmotoren	121
8-polig 400V-50Hz IC 410 (unbelüftet) und IC 416 (fremdbelüftet) Drehmomenttoleranz ±10)% 121
12-polig 400V-50Hz IC 410 (unbelüftet) und IC 416 (fremdbelüftet) Drehmomenttoleranz	
	122

Datum: 10.06.2025 Version: 2.6

Maßblätter zu Drehfeldmagnetmotoren	. 123
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B3	. 123
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: ≥IP 56 / Bauform IM B3	. 124
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B5	. 125
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: ≥IP 56 / Bauform IM B5	. 126
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B14	. 127
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: ≥IP 56 / Bauform IM B14	. 128
Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B3	129
Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 56 / Bauform IM B3	. 130
Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B5	131
Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 56 / Bauform IM B5	. 132
Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM	
Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 56 / Bauform IM B14	. 134
Tauchmotoren	. 135
Tauchmotoren	. 136
Normen und Vorschriften	. 136
Gehäuseausführung	. 136
Wellenende	. 136
Schwingungen	. 136
Lagerung	. 136
Wellenabdichtung	. 137
Leckageüberwachung	. 137
Elektrische Ausführung	. 137
Bemessungsspannung und Frequenz	. 137
Wärmeklasse	. 137
Motoranschluss	. 137
Motorschutz	. 138
Stillstandsheizung	. 138
Technische Daten zu Tauchmotoren	. 139
4-polig 400V-50Hz IC 410	. 139
Maßblätter zu Tauchmotoren	. 140
Baugröße: 90 – 112 / Kühlart: IC410 unbelüftet / Schutzart: IP 68 / Bauform IM B5	. 140
Baugröße: 90 – 112 / Kühlart: IC410 unbelüftet / Schutzart: IP 68 / Bauform IM B14	. 141
Hygiene-Motoren	. 142
Hygiene-Motoren	. 143
Technische Ausführung	. 143

Datum: 10.06.2025 Version: 2.6

Technische Daten zu Hygiene-Motoren	. 144
4-polig 400V-50Hz IC 410 (unbelüftet)	. 144
4-polig 400V-50Hz IC 3S7 (flüssigkeitsgekühlt)	. 144
Maßblätter zu Hygiene-Motoren	. 145
Baugröße: 71 – 90 / Kühlart: IC410 unbelüftet / Schutzart: IP 66 – IP 68 / Bauform IM B5	. 145
Baugröße: 71 – 90 / Kühlart: IC410 unbelüftet / Schutzart: IP 66 – IP 68 / Bauform IM B14	. 146
Baugröße: 71 – 90 / Kühlart: IC3S7 flüssigkeitsgekühlt / Schutzart: IP 66 – IP 68 / Bauform I	
Baugröße: 71 – 90 / Kühlart: IC3S7 flüssigkeitsgekühlt / Schutzart: IP 66 – IP 68 / Bauform IM	l B14
x-geschützte Motoren Baureihe R3G + R3D	. 149
Ex-geschützte Motoren Baureihe R3G + R3D	. 150
Zutreffende Zündschutzarten für elektrischer Maschinen Typ R3G + R3D	. 150
Gas - Explosionsschutz	. 151
Staub - Explosionsschutz	. 151
Technische Daten zu Motoren Baureihe R3G + R3D	. 154
2-polig 400V-50Hz IC 411	. 154
2-polig 460V-60Hz IC 411	. 155
4-polig 400V-50Hz IC 411	. 156
4-polig 460V-60Hz IC 411	. 157
6-polig 400V-50Hz IC 411	. 158
6-polig 460V-60Hz IC 411	. 159
2-polig 400V-50Hz IC 411 R3D mit Bremse	. 160
2-polig 460V-60Hz IC 411 R3D mit Bremse	. 161
4-polig 400V-50Hz IC 411 R3D mit Bremse	. 162
4-polig 460V-60Hz IC 411 R3D mit Bremse	. 163
6-polig 400V-50Hz IC 411 R3D mit Bremse	. 164
6-polig 460V-60Hz IC 411 R3D mit Bremse	. 165
Maßblätter zu Motoren Baureihe R3G + R3D	. 166
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone Bauform IM B3	
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone Bauform IM B5	
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone Bauform IM B14	
Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone Bauform IM B3	
Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone Bauform IM B5	

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 2 Bauform IM B14	
Maßblätter zu Bremsmotoren Baureihe R3D	
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 22 /	
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 22 /	
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 22 / E	Bauform IM B14
Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 22 /	
Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 22 /	
Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 22 / E	
Ex-geschützte Motoren Baureihe DEx	178
Inhalt Planungsteil Ex-geschützte Motoren Baureihe DEx	178
Übersicht Fertigungsprogramm	178
Grundierung / Lackierung	179
Zündschutzarten elektrischer Maschinen	180
Gas - Explosionsschutz	181
Staub-Explosionsschutz	182
Mechanische Ausführung	186
Bauformen	186
IP Schutzarten	188
Gehäuseausführungen	189
Aufbau	189
Flanschvarianten	190
Lagerung	191
Wellenenden	192
Radial- und Axialkräfte	192
Lagerschmierung	195
Klemmenkastenlage und Kabeleinführungen	196
Geräusche	198
Schwingungen	
Elektrische Ausführung	
Leistung, Spannung und Frequenz	
Erwärmung und Wärmeklassen	
Schaltungen	

Datum: 10.06.2025 Version: 2.6

Überlast	199
Drehrichtung	200
Erdungs- und Schutzleiteranschluss	200
Betrieb am Frequenzumrichter	200
Motorschutz	201
Kühlung (Belüftung)	201
Aufstellungshöhe und Kühlmitteltemperatur	202
Stillstandsheizung	203
Sonderausführungen	204
Motoren mit Geber	204
Motoren mit Motorkabel	204
Motoren mit Sonderwelle und Sonderflansch	204
Übersicht Sonderausführungen	205
Ex-geschützte Drehstrommotoren (eintourig)	206
2-polig 400V-50Hz IC 411	206
4-polig 400V-50Hz IC 411	207
6-polig 400V-50Hz IC 411	208
8-polig 400V-50Hz IC 411	209
Ex-geschützte Drehstrommotoren (polumschaltbar)	210
4-2 polig 400V-50Hz Δ/YY IC 411	210
6-4 polig 400V-50Hz Y/Y IC 411	211
8-4 polig 400V-50Hz Δ/YY IC 411	212
8-6 polig 400V-50Hz Y/Y IC 411	213
Ex-geschützte Drehstrommotoren, Betrieb am Frequenz-umrichter	214
Betrieb am Frequenzumrichter: 2-polige Motoren	214
Betrieb am Frequenzumrichter: 4-polige Motoren	215
Betrieb am Frequenzumrichter: 6-polige Motoren	216
Betrieb am Frequenzumrichter: 8-polige Motoren	217
Maßblätter zu Motoren Baureihe DEx	218
Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B3 - / IM V5 – IM 1011 / IM V6 – IM 1031	
Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B5 - / IM V1 – IM 3011 / IM V3 – IM 3031	
Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B14 - / IM V18 – IM 3611 / IM V19 – IM 3631	
Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B35 - / IM V15 – IM 2011 / IM V35 – IM 2031	

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IN / IM V17 – IM 2111 / IM V37 – IM 2131	
Ex-geschützte Drehstrombremsmotoren	227
Motoren mit Bremse	227
Spannung und Schaltungsart	227
Bremsmotoren-Leistungsdaten	227
Motoren mit eingebauter Bremse / Typ BM	228
Technische Daten zu Motoren mit eingebauter Bremse / Typ BM	230
Maßblätter zu Motoren mit eingebauter Bremse / Typ BM	232
Motoren mit eingebauter Bremse / Typ KB (Kendrion)	233
Technische Daten zu Motoren mit eingebauter Bremse / Typ KB (Kendrion)	234
Maßblätter zu Motoren mit eingebauter Bremse / Typ KB (Kendrion)	235
Motoren mit eingebauter Bremse / Typ BD (VIS)	236
Technische Daten zu Motoren mit eingebauter Bremse / Typ BD (VIS)	237
Maßblätter zu Motoren mit eingebauter Bremse / Typ BD (VIS)	239
Ex-geschützte Drehstrommotoren in Sonderausführung	240
Ex-geschützte Drehstrommotoren in Sonderausführung: Fremdlüfter	241
Ex-geschützte Drehstrommotoren in Sonderausführung: Hohlwellengeber	242
Ex-geschützte Drehstrommotoren in Sonderausführung: Kabelanschluss	244

Planungsteil Motoren Baureihe R

Inhalt

Übersicht Fertigungsprogramm

HEW produziert seit über 125 Jahren Elektromotoren. Unser Fertigungsprogramm umfasst folgende Varianten:

- Norm-Drehstrommotoren
- Standard Polumschaltbare Drehstrommotoren
- Standard Polumschaltbare Drehstrommotoren- Lüfterantriebe
- Reluktanzmotoren
- Einphasenmotoren
- Bremsmotoren
- Drehfeldmagnete
- Tauchmotoren
- Hygienemotoren
- Ex-geschützte Drehstrommotoren für Einsatz in Zone 2
- Ex-geschützte Drehstrom(brems)motoren für Einsatz in Zone 22
- Explosionsgeschützte Drehstrommotoren (siehe Katalogteil Ex-geschützte Motoren Baureihe DEx)
- Explosionsgeschützte Drehstrom-Bremsmotoren (siehe Katalogteil Ex-geschützte Motoren Baureihe DEx)

Unsere Motoren sind aufgrund eines hochwertigen Isolationssystems für den Betrieb am Frequenzumrichter geeignet.

In der Standardausführung werden Sie in Wärmeklasse F gefertigt. Optional ist die Fertigung in Wärmeklasse H möglich. Weiterhin können die Wicklungen mit Kaltleiter oder Thermoschalter ausgerüstet werden. Andere Temperaturüberwachungselemente, Stillstandsheizung sowie ein verstärkter Tropen- und Feuchtschutz sind auf Anfrage lieferbar.

Der Einsatz von Drehstrommotoren in anspruchsvollen Antriebssystemen verlangt oftmals den Anbau von Rückführelementen.

HEW liefert die Motoren auf Kundenwunsch auch mit Drehgeber unterschiedlichster Hersteller. Auch Tacho, Resolver oder Sensorlager sind auf Anfrage lieferbar.

Die Ausrüstung mit diesen Gebern kann wahlweise an Drehstrommotoren bzw. Drehstrom-Bremsmotoren erfolgen.

Standardmäßig sind die Motoren in Schutzart IP 54 ausgeführt. Optional können auch höhere Schutzarten geliefert werden (*Abschnitt Schutzarten*).

Ausführungen nach anderen Normen, Vorschriften bzw. Richtlinien (z.B. UL/CSA, VIK oder DNV-GL) sind auf Anfrage lieferbar.

Grundierung / Lackierung

HEW-Motoren können mit unterschiedlichen Beschichtungssystemen geliefert werden. Die Produkte können ungrundiert, grundiert als auch nach einem Beschichtungssystem in Anlehnung an die Korrosivitätskategorien (DIN EN ISO 12944) geliefert werden. Die Standardlackierung ist in Anlehnung an Korrosivitätskategorie C1 ausgelegt. Höherwertige Korrosivitätskategorien sind auf Anfrage möglich.

Die Standardfarbtöne von HEW sind folgende:

- RAL 5010 (enzianblau)
- RAL 7031 (blaugrau)
- RAL 6011 (resedagrün)

Vorzugsfarben in folgenden RAL Tönen können kurzfristig zur Verfügung gestellt werden:

- RAL 2003 (pastellorange)
- RAL 2004 (reinorange)
- RAL 3020 (verkehrsrot)
- RAL 5003 (saphirblau)
- RAL 5009 (azurblau)
- RAL 6018 (gelbgrün)
- RAL 7035 (lichtgrau)
- RAL 9005 (tiefschwarz)

Sonderfarbtöne nach unterschiedlichen Farbtabellen sind nach vorheriger Prüfung ebenfalls lieferbar. Bitte sprechen Sie uns im Bedarfsfall an.

Glanzgrade

Unser Standardglanzgrad ist hochglänzend.

Unser standardisierter Strukturlack ist ausschließlich in glänzend erhältlich.

Sonderglanzgrade sind nach vorheriger Prüfung lieferbar. Bitte sprechen Sie uns im Bedarfsfall an.

Wirkungsgrade

Seit jeher sind Langlebigkeit, Sicherheit und Umweltfreundlichkeit Teil unserer Firmenphilosophie. Daher führte der schonende und verantwortungsbewusste Umgang mit Ressourcen schon früh zur Entwicklung energiesparender Motoren und Antriebskonzepte.

Das Thema der Energieeffizienz von Elektromotoren wird durch die EU-Verordnung (VERORDNUNG (EU) 2019/1781 DER KOMMISSION vom 1. Oktober 2019) immer weiter in den Vordergrund gerückt.

Neben dieser Verordnung sind weitere länderspezifische Regelungen zu beachten.

EU-Verordnung (EU) Nr. 2019/1781

Die Verordnung legt die Energieeffizienzanforderungen an die umweltgerechte Gestaltung von Elektromotoren fest.

Ab dem 01. Juli 2021 gilt:

- Die Energieeffizienz von Dreiphasenmotoren mit einer Nennausgangsleistung von mindestens 0,75 kW und höchstens 1 000 kW, die 2, 4, 6 oder 8 Pole aufweisen und bei denen es sich nicht um Ex-eb-Motoren mit erhöhter Sicherheit handelt, muss mindestens Effizienzniveau IE3 entsprechen;
- die Energieeffizienz von Dreiphasenmotoren mit einer Nennausgangsleistung von mindestens 0,12 kW und weniger als 0,75 kW, die 2, 4, 6 oder 8 Pole aufweisen und bei denen es sich nicht um Ex-eb-Motoren mit erhöhter Sicherheit handelt, muss mindestens dem Effizienzniveau IE2 entsprechen.

In der Verordnung wird als "Motor" ein eintouriger Dreiphasen-50Hz, 60Hz- oder -50/60Hz-Käfigläufer-Induktionsmotor mit folgenden Eigenschaften bezeichnet:

- Betrieb an sinusförmiger Spannung;
- 2- bis 8-polig;
- Nennspannung $U_N = 50V$ bis zu 1000V;
- Nennausgangsleistung P_N zwischen 0,12kW und bis zu 1000kW;
- für Dauerbetrieb ausgelegt und;
- direkt für den Betrieb am öffentlichen Stromnetz bestimmt sind.

Die Verordnung gilt nicht für:

- vollständig in ein Produkt (z. B. Getriebe, Pumpe, Ventilator oder Verdichter) integrierte Motoren, deren Energieeffizienz auch bei Verwendung eines provisorischen Lagerschilds und Antriebslagers nicht unabhängig von dem Produkt geprüft werden kann; der Motor muss (neben den Verbindungsteilen wie Schrauben) gemeinsame Bauteile mit dem angetriebenen Gerät (z.B. eine Welle oder ein Gehäuse) haben und darf nicht so ausgelegt sein, dass er vollständig von dem angetriebenen Gerät getrennt und unabhängig betrieben werden kann. Im Falle der Trennung darf der Motor nicht mehr betriebsfähig sein;
- Motoren mit einer integrierten Drehzahlregelung (Kompaktantriebe), deren Energieeffizienz nicht unabhängig von der Drehzahlregelung geprüft werden kann;
- Motoren mit integrierter Bremse, die integraler Bestandteil der inneren Motorenkonstruktion ist und während der Prüfung der Motoreneffizienz weder entfernt noch von einer separaten Stromquelle versorgt werden kann;

- speziell ausgelegte und ausschließlich für folgende Betriebsbedingungen spezifizierte Motoren:
 - o in einer Höhe von mehr als 4 000 Metern über dem Meeresspiegel;
 - bei Umgebungstemperaturen über 60 °C;
 - bei einer Betriebshöchsttemperatur über 400 °C;
 - bei Umgebungstemperaturen unter 30 °C oder
 - bei einer Temperatur der Kühlflüssigkeit am Einlass eines Produkts von unter 0 °C oder über 32 °C;
- Motoren, die speziell für einen Betrieb ausgelegt und spezifiziert sind, bei dem sie vollständig in eine Flüssigkeit eingetaucht sind;
- Motoren, die speziell für die erforderliche Sicherheit kerntechnischer Anlagen im Sinne des Artikels 3 der Richtlinie 2009/71/Euratom des Rates geeignet sind;
- explosionsgeschützte Motoren, die gemäß Anhang I Nummer 1 der Richtlinie 2014/34/EU des Europäischen Parlaments und des Rates für Untertageanlagen ausgelegt und zertifiziert sind;
- Motoren in kabellosen oder batteriebetriebenen Geräten;
- Motoren in Handgeräten, deren Gewicht während des Betriebs von Hand abgestützt wird;
- Motoren in handgeführten mobilen Geräten, die während des Betriebs bewegt werden;
- Motoren mit mechanischen Kommutatoren;
- vollständig geschlossene selbstgekühlte Motoren (TENV-Motoren => Kühlart IC410);
- vor dem 1. Juli 2029 in Verkehr gebrachte Motoren, die als Ersatz für identische, in Produkte integrierte Motoren dienen, die vor dem 1. Juli 2022 in Verkehr gebracht wurden, und speziell dafür vermarktet werden:
- Motoren mit mehreren Drehzahlen, d. h. Motoren mit mehreren Wicklungen oder mit schaltbaren Wicklungen, die eine unterschiedliche Anzahl von Polen und unterschiedliche Drehzahlen aufweisen;
- speziell für den Antrieb von Elektrofahrzeugen ausgelegte Motoren.

Normenwerk IEC 60034-30-1: Wirkungsgrad-Klassifizierung von netzgespeisten Drehstrommotoren (IE-Code)

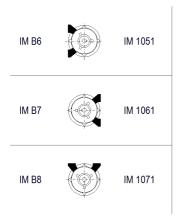
Die zugehörigen Wirkungsgradgrenzwerte für das jeweilige Effizienzniveau sind Abhängigkeit der Bemessungsleistung und Polzahl in dem oben angegebenen Normenwerk definiert.

Normen und Vorschriften

Die Motoren entsprechen den einschlägigen Normen und Vorschriften, insbesondere den folgenden:

Titel	Deutsche Norm DIN	Europäische Norm CENELEC	Internationale Norm IEC
Drehstromasynchronmotoren für den Allgemeingebrauch mit standardisierten Abmessungen und Leistungen	DIN EN 50347	EN 50347	
Drehende elektrische Maschinen - Bemessung und Betriebsverhalten	DIN EN 60034-1 (VDE 0530-1)	EN 60034-1	IEC 60034-1
Drehende elektrische Maschinen - Schutzarten aufgrund der Gesamtkonstruktion von drehenden elektrischen Maschinen (IP-Code)	DIN EN 60034-5 (VDE 0530-5)	EN 60034-5	IEC 60034-5
Drehende elektrische Maschinen - Einteilung der Kühlverfahren (IC-Code)	DIN EN 60034-6	EN 60034-6	IEC 60034-6
Drehende elektrische Maschinen - Klassifizierung der Bauarten, der Aufstellungsarten und der Klemmkasten- Lage (IM-Code)	DIN EN 60034-7	EN 60034-7	IEC 60034-7
Drehende elektrische Maschinen - Anschlussbezeichnungen und Drehsinn	DIN EN 60034-8 (VDE 0530-8)	EN 60034-8	IEC 60034-8
Drehende elektrische Maschinen - Geräuschgrenzwerte	DIN EN 60034-9 (VDE 0530-9)	EN 60034-9	IEC 60034-9
Drehende elektrische Maschinen - Anlaufverhalten von Drehstrommotoren mit Käfigläufer ausgenommen polumschaltbare Motoren	DIN EN 60034- 12 (VDE 0530-12)	EN 60034-12	IEC 60034-12
Drehende elektrische Maschinen - Mechanische Schwingungen von bestimmten Maschinen mit einer Achshöhe von 56 mm und höher – Messung, Bewertung und Grenzwerte der Schwingstärke	DIN EN60034- 14 (VDE 0530-14)	EN 60034-14	IEC 60034-14
Drehende elektrische Maschinen – Wirkungsgrad-Klassifizierung von netzgespeisten Drehstrommotoren (IE Code)	DIN EN 60034- 30-1 (VDE 0530-30- 1)	EN 60034-30-1	IEC 60034-30-1
Normspannungen	DIN EN 60038 (VDE 175-1)	EN 60038	IEC 60038

Stand September 2018



Mechanische Ausführung

Bauformen

Übersicht von Bauform- und IM Code (International Mounting) nach DIN EN 60034-7 der am häufigsten verwendeten Ausführungen.

horizontale We	-	vertik	cale Welle	vert	tikale Welle	
IM Code I	IM Code II	IM Code I		IM Code II	IM Code I	IM Code II
IM B3	IM 1001	IM V5		IM 1011	IM V6	IM 1031
IM B5	IM 3001	IM V1		IM 3011	IM V3	IM 3031
IM B14	IM 3601	IM V18		IM 3611	IM V19	IM 3631
IM B35 👄	IM 2001	IM V15		IM 2011	IM V35	IM 2031
IM B34	IM 2101	IM V17		IM 2111	IM V37	IM 2131

Die Motoren vom Typ IM B3 können auch in den IM B6, IM B7 und IM B8 Montagepositionen betrieben werden.

Schutzarten

Die Schutzarten drehender elektrischer Maschinen werden nach DIN EN 60034-5 (VDE 0530-5) durch ein Kurzzeichen angegeben, das aus den Kennbuchstaben IP (International Protection) und zwei Kennziffern zusammengesetzt ist.

- 1. Kennziffer (0 bis 6): Schutzgrade für den Berührungs- und Fremdkörperschutz.
- 2. Kennziffer (0 bis 8): Schutzgrade für den Wasserschutz.

HEW-Standard-Motoren werden in Schutzart IP 54 geliefert.

Nachfolgende Tabelle enthält Schutzarten für Elektromotoren.

Der Schutzgrad **IP5X** gegen Staub ist der allgemein übliche. Abweichende Schutzarten sind auf Anfrage lieferbar.

Schutzart	1. Kennziffer	2. Kennziffer		
	Berührungs- und Fremdkörperschutz	Wasserschutz		
IP 54	Schutz gegen Berühren von unter Spannung stehenden Teilen und Annähern an solche Teile sowie Berühren sich bewegender Teile innerhalb des Gehäuses. Das Eindringen von Staub ist nicht vollkommen verhindert, aber der Staub kann nicht in solchen Mengen eindringen, dass ein zufriedenstellender Betrieb der Maschine beeinträchtigt wird.	Wasser, das aus allen Richtungen gegen die Maschine spritzt, darf keine schädliche Wirkung haben.		
IP 55		Ein Wasserstrahl aus einer Düse, der aus allen Richtungen gegen die Maschine gerichtet wird, darf keine schädliche Wirkung haben.		
IP 56		Wasser durch schwere Seen oder Wasser in starkem Strahl darf nicht in schädlichen Mengen in das Gehäuse eindringen.		

Um ein Hereinfallen von Fremdkörpern zu verhindern ist es möglich die Lüfterhaube mit einem Schutzdach auszurüsten. Dieses ist besonders für alle Bauformen mit "Wellenende nach unten" (z.B. V1 / V5 / V18) sinnvoll.

Gehäuseausführungen

Die Gehäuse der Baugrößen 63 bis 160 bestehen aus einer Aluminiumlegierung. Die Gehäuse der Baugröße 180 sind aus Grauguss.

Abweichend vom Standard-Programm können auch die Baugrößen 80-160 (auf Anfrage) in Grauguss geliefert werden.

Datum: 10.06.2025 Version: 2.6

Flanschvarianten

Lieferbare Flansche

Kennzeichnung nach DIN EN 50347	FF100	FF115	FF130	FF165	FF215	FF265	FF300
"Alte" Bezeichnung nach DIN 42948 (B5)	A120	A140	A160	A200	A250	A300	A350
Baugröße 63	0	x	0				
Baugröße 71	0	0	x				
Baugröße 80	0	0	0	x			
Baugröße 90			0	x	0		
Baugröße 100			0	0	x		
Baugröße 112			0	0	x		
Baugröße 132					0	x	
Baugröße 160					0	0	x
Baugröße 180					0	0	x

Kennzeichnung nach DIN EN 50347	FT65	FT75	FT85	FT100	FT115	FT130	FT165	FT215
"Alte" Bezeichnung nach DIN 42948 (B14)	C80	C90	C105	C120	C140	C160	C200	C250
Baugröße 63	0	х	0	0				
Baugröße 71	0	0	x	0				
Baugröße 80		0	0	x	0	0		
Baugröße 90			0	0	x	0		
Baugröße 100				0	0	x	0	
Baugröße 112						X	0	
Baugröße 132						0	x	
Baugröße 160							0	x

x = Zuordnung nach Norm (DIN EN 50347)

o = Sonderflansch

Weitere Flanschvarianten auf Anfrage lieferbar.

Hinweis

Kennzeichnung nach DIN EN 50347

FF – Flansch mit Durchgangslöchern FF entspricht dem Lochkreisdurchmesser **M** der Befestigungsbohrungen

FT – Flansch mit Gewindelöchern FT entspricht dem Lochkreisdurchmesser **M** der Befestigungsgewinde

alte Kennzeichnung nach DIN 42948

A entspricht dem Flanschaußendurchmesser beim Flansch B5C entspricht dem Flanschaußendurchmesser beim Flansch B14

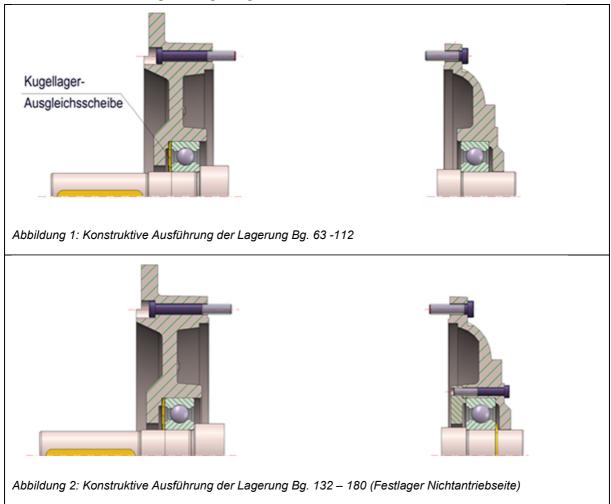
Lagerung

HEW-Motoren der Baugröße 63 bis 180 besitzen auf der Antriebsseite (DS) und auf der Nichtantriebsseite (NS) Rillenkugellager nach DIN 625. Bei Motoren der Baugröße 132 bis 180 ist das nichtantriebsseitige Lager als Festlager ausgeführt. Bei Schutzart IP 54 werden die Lager in 2Z mit Lagerluft C3 ausgeführt. Ab Schutzart IP 55 kommen 2RS Lager in C3 zum Einsatz. Das DS-Lager wird als Loslager ausgeführt und mit Kugellager-Ausgleichsscheiben angestellt.

Standard-Lagerzuordnung

Baugröße	DS-Lager	NS-Lager
63	6202 2Z C3	6202 2Z C3
71	6202 2Z C3	6202 2Z C3
80	6204 2Z C3	6204 2Z C3
90	6205 2Z C3	6205 2Z C3
100	6206 2Z C3	6206 2Z C3
112	6306 2Z C3	6306 2Z C3
132	6308 2Z C3	6308 2Z C3 (Festlager)
160	6309 2Z C3	6309 2Z C3 (Festlager)
180	6310 2Z C3	6310 2Z C3 (Festlager)

Lagerschmierung


Die Motoren sind mit dauergeschmierten Lagern ausgerüstet. Die nominelle Lagerlebensdauer bei Ausnutzung der maximal zulässigen Belastung beträgt min. 20.000 h.

Einsatz von Zylinderrollenlager

Bei Überschreitung der zulässigen Radialkräfte (siehe Abschnitt Radial- und Axialkräfte) können auf Anfrage Zylinderrollenlager eingesetzt werden.

Konstruktive Ausführung der Lagerung

Wellenenden

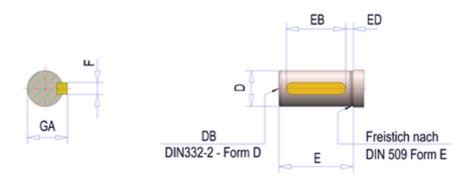
Nach IEC 60034-7 erfolgt die Definition der Motorenseiten wie folgt:

DS (D-Seite) = Antriebsseite des Motors (Driving side)

NS (N-Seite) = Nichtantriebsseite / die der DS entgegengesetzte Seite (Non-driving side)

In Deutschland noch übliche Bezeichnungen:

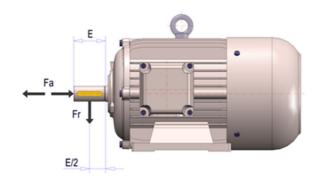
für DS = AS (A-Seite)


für NS = BS (B-Seite)

Die Wellenenden sind zylindrisch und entsprechen in ihren Abmessungen, Toleranzen und ihrer Zuordnung zu den Baugrößen und Leistungen der DIN EN 50347.

Die Toleranzen für die Wellendurchmesser sind wie folgt:

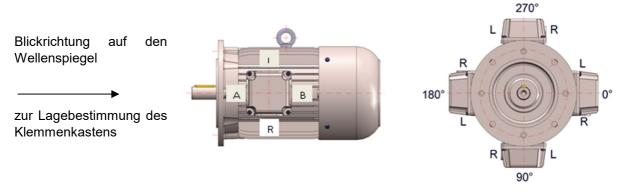
- bis Ø 28 mm: j6 (ISO)
- ab Ø 28 mm bis Ø 50 mm: k6 (ISO)
- ab Ø 50 mm: m6 (ISO)


Bei allen Normmotoren ist das DS-Wellenende mit einer Zentrierbohrung nach DIN 322-2 Form D versehen. Im NS-Wellenende ist eine Zentrierbohrung nach DIN 322-1. Die Passfedern sind nach DIN 6885-1 Form A ausgeführt und werden stets mit den Motoren geliefert. Die Ausführung mit einem zweiten freien Wellenende ist auf Kundenwunsch möglich.

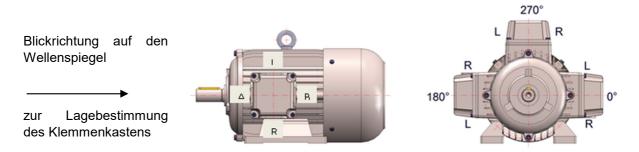
Baugröße	D	E	DB	EB	ED	GA	F
63	11	23	M4	18	2,5	12,5	4
71	14	30	M5	25	2,5	16	5
80	19	40	M6	32	4	21,5	6
90	24	50	M8	40	5	27	8
100	28	60	M10	50	5	31	8
112	28	60	M10	50	5	31	8
132	38	80	M12	70	5	41	10
160	42	110	M16	90	10	45	12
180	48	110	M16	100	5	51,5	14

Radial- und Axialkräfte

Synchrondrehzahl	3000	1500	1000	750				
[min ⁻¹]	(2-polig)	(4-polig)	(6-polig)	(8-polig)				
Baugröße	zulässige Radialkraft Fr [N]							
		zulässige Ax	kialkraft Fa [N]					
63	280	340	390	430				
	240	320	380	440				
71	330	410	470	510				
	240	320	380	440				
80	510	640	750	810				
	400	500	600	670				
90 S +L	620	770	890	970				
	445	560	680	750				
100 L	810	1010	1170	1300				
	600	760	930	1020				
112 M	1070	1330	1510	1710				
	810	1090	1340	1490				
132 S	1430	1740	2010	2200				
	1190	1610	1900	2160				
132 M	1470	1810	2080	2250				
	1190	1610	1900	2160				
160 M	1850	2190	2560	2780				
	1450	1940	2300	2630				
160 L	1920	2250	2650	2880				
	1450	1940	2300	2630				
180 M	2410	2870	3290	3670				
	1800	2300	3000	3500				
180 L	2510	2990	3430	3830				
	1800	2300	3000	3500				


Die o.g. zulässigen Belastungen sind entweder als Radialkräfte oder als Axialkräfte zu verstehen und gelten für den Betrieb bei 50 Hz und einer rechnerischen Lager Lebensdauer von 20.000 h. Bei 60 Hz-Betrieb werden die Werte um ca.10 % reduziert.

Datum: 10.06.2025 Version: 2.6



Klemmenkastenlage

Die jeweils mögliche Klemmenkastenlage und Kabeleinführungsposition kann dem nachfolgenden Bild entnommen werden:

Normale Klemmenkastenlage = 0°R

Im Standardfall sind (falls vorhanden) der Bremslüftungshebel und der Klemmenkasten des Fremdlüfters in einer Flucht mit dem Klemmenkasten des Motors ausgeführt. Abweichendes ist gesondert zu bestellen.

Kabeleinführungen im Klemmenkasten

Die Klemmenkästen sind mit Gewinde nach DIN EN 60423 für Verschraubungen nach DIN EN 50262 versehen, werden aber ohne Verschraubungen ausgeliefert.

Ex-geschützte Motoren Zone 2 / Zone 22 werden mit ATEX-Kabelverschraubungen und ATEX-Verschlussschrauben geliefert.

Für den ordnungsgemäßen Anschluss nach den einschlägigen VDE-Bestimmungen ist der Betreiber verantwortlich. Dazu befindet sich im Klemmenkasten eine Klemmenplatte nach DIN 46294.

Die Klemmenkästen (Deckel) sind für Baugröße 63-160 aus Aluminiumlegierung. Bei Baugröße 180 aus Grauguss.

Für Gehäuse aus Grauguss (Sonderausführung auf Anfrage) sind die Klemmenkästen ebenfalls aus Grauguss.

Baugröße	Gewinde der Kontakt- schraube	DIN 42925	HEW (IP 54/IP 55)	HEW (> IP 55)	Zone 2 / 22 ohne Bremse	Zone 22 mit Bremse
63	M4	-	2x M16x1,5 1)	2x M16x1,5	1x M16x1,5 1x M16x1,5 ²⁾	2x M16x1,5
71	M4	-	2x M16x1,5 ¹⁾	2x M16x1,5	1x M16x1,5 1x M16x1,5 ²⁾	2x M16x1,5
80	M4	-	2x M20x1,5 ¹⁾	2x M25x1,5	1x M25x1,5 1x M25x1,5 ²⁾	1x M25x1,5 1x M16x1,5
90	M4	1x M25x1,5	2x M20x1,5 1)	2x M25x1,5	1x M25x1,5 1x M25x1,5 ²⁾	1x M25x1,5 1x M16x1,5
100	M4	1x M32x1,5	2x M20x1,5 1)	2x M25x1,5	1x M25x1,5 1x M25x1,5 ²⁾	1x M25x1,5 1x M16x1,5
112	M5	2x M32x1,5	2x M20x1,5 1)	2x M25x1,5	1x M25x1,5 1x M25x1,5 ²⁾	1x M25x1,5 1x M16x1,5
132	M6	2x M32x1,5	2x M25x1,5 1x M12x1,5 ²⁾	2x M25x1,5 1x M12x1,5 ²⁾	1x M25x1,5 1x M25x1,5 ²⁾	1x M25x1,5 1x M16x1,5 1x M12x1 5 2)
160	M8	2x M40x1,5	2x M32x1,5 1x M12x1,5 ²⁾			
180	M8	2x M40x1,5	2x M40x1,5 1x M12x1,5 ²⁾			

¹⁾ einteiliger Klemmenkastendeckel

Abweichende Ausführungen sind vom Kunden gesondert zu bestellen und mit HEW zu vereinbaren.

Einphasenmotoren mit Relais siehe Spalte > IP 55 / nur mit Betriebskondensator siehe Spalte IP 54 / IP 55.

Polumschaltbare Motoren > 6 Ausführungen sind mit HEW zu vereinbaren.

Sonderausführungen, wie Stecker oder montierter Kabelsatz mit und ohne Klemmenkasten, sind lieferbar.

²⁾ mit Verschlussschraube verschlossen

Geräusche

Die in der DIN EN 60034-9 vorgegebenen Grenzwerte der Geräusche werden von allen Motoren unterschritten. Angegeben ist der A-bewertete Mittelwert des Messflächen-Schalldruckpegels L_{pA} in 1 m Abstand und der Schallleistungspegel L_{WA} .

Die Werte gelten nur für eintourige Drehstrommotoren der Wärmeklasse "F" bei Netzbetrieb mit einer Bemessungsfrequenz von 50 Hz und mit einer Toleranz von +3dB(A).

Baugröße				Schalldr	ıckpegel L _p	Α			
	3 000 mir	n ⁻¹	1500 mir	1 ⁻¹	1000 mir	min ⁻¹ 750		nin ⁻¹	
	L_pA	Lwa	L_pA	Lwa	L_pA	Lwa	L_pA	Lwa	
	dB (A)	dB (A)	dB (A)	dB (A)	dB (A)	dB (A)	dB (A)	dB (A)	
63	55	64	46	55	41	50	-	-	
71	58	67	49	58	43	52	38	47	
80	60	69	47	56	47	56	44	53	
90	64	73	52	61	49	58	47	56	
100	69	78	56	65	48	57	46	55	
112	71	80	56	65	49	58	49	58	
132	71	81	60	70	55	65	52	62	
160	72	82	62	72	59	69	54	64	
180	72	83	62	73	60	71	60	71	

Angaben für polumschaltbare Drehstrommotoren oder abweichende Betriebsbedingungen auf Anfrage.

Schwingungen

Alle Läufer der Motoren sind mit halber Passfeder dynamisch gewuchtet nach DIN ISO 21940-32.

Das Schwingverhalten der Motoren entspricht der Schwinggrößenstufe A nach DIN EN 60034-14 (siehe nachfolgende Tabelle).

Für erhöhte Laufruhe kann die Schwinggrößenstufe B auf Anfrage geliefert werden.

Bei Normmotoren mit einer Drehzahl zwischen 600 min-1 und 3600 min-1 wird die Schwinggeschwindigkeit V_{eff} [mm/s] gemessen.

Schwingungsgrenzwerte für elektrische Maschinen nach DIN EN IEC 60034-14 (April 2019).

	Grenzwerte der Schwingstärke in Abhängigkeit der Baugröße				
Schwinggrößenstufe	V _{eff} [mm/s]				
	Baugröße 56 bis 132	Baugröße 160 bis 280			
Α	2,8	2,8			
В	1,1	1,8			

Planungsteil **Motoren Baureihe R** Elektrische Ausführung

Leistung, Spannung und Frequenz

In der Grundausführung werden die Motoren für folgende Bemessungsspannungen geliefert:

	•	· ·		
Spannung / Schaltung	Frequenz	Leistung	Moment	Strom
V	Hz	Faktor P _n	Faktor M _n	Faktor I _n
230 / 400 Δ/Y	50	1,0	1,00	1,0
254 / 440 Δ/Y	60	1,0	0,83	0,9
277 / 480 Δ/Y	60	1,2	1,00	1,0
400 / 690 Δ / Y	50	1,0	1,00	1,0
440 Δ	60	1,0	0,83	0,9
480 Δ	60	1,2	1,00	1,0

Die zulässigen Spannungs-Frequenz-Schwankungen entsprechen den Bestimmungen der DIN EN 60034-1.

Sonderspannungen und -frequenzen sowie Weitbereichsspannungsausführungen auf Kundenwunsch. (siehe Betrieb am Frequenzumrichter).

Die Nennleistung gilt für Dauerbetrieb nach DIN EN 60034-1, bezogen auf 40° C Kühlmitteltemperatur und einer Aufstellungshöhe <1000 m über NN.

Bei der Auswahl der optimalen Motorleistung ist Folgendes zu berücksichtigen:

- erforderliche Leistung der Arbeitsmaschine
- Betriebsart
- Anlauf-, Brems- und Reversierbetrieb
- Momentverlauf der Arbeitsmaschine
- Netzverhältnisse
- Kühlung, Kühlmitteltemperatur
- Aufstellungshöhe u.a.

Erwärmung und Wärmeklassen

Die Wahl der einzelnen Komponenten des Isolationssystems bestimmt die Einordnung in die Wärmeklassen nach DIN EN 60034-1.

Die Grenztemperatur der einzelnen Wärmeklassen setzt sich aus der Kühlmitteltemperatur von max. 40° C und der mittleren Grenzübertemperatur der Wicklung zusammen.

Die nachfolgende Tabelle zeigt den Zusammenhang zwischen den Wärmeklassen und den Grenztemperaturen:

Wärmeklasse	zugeordnete				
Warricklasse	Grenztemperatur				
В	120° C				
F	145° C				
Н	165° C				

HEW liefert die Motoren standardmäßig in der Wärmeklasse F.

Die Wicklungen werden neben hochwertigem Lackdraht und Tränkharz grundsätzlich auch mit Phasenisolation gefertigt. Die dadurch erreichte hohe elektrische Festigkeit garantiert den problemlosen Einsatz der Motoren am Frequenzumrichter.

Belastbarkeit

Entsprechend der DIN EN 60034-1 können die Motoren mit dem 1,5-fachen Nennstrom über einen Zeitraum von 2 Minuten oder dem 1,6-fachen Nennmoment über einen Zeitraum von 15 Sekunden überlastet werden.

Drehrichtung

Die Motoren sind generell für beide Drehrichtungen einsetzbar. Die Wicklungsenden U1, V1, W1 der Motoren sind so ausgeführt, dass sich bei Anschluss an das Drehstromnetz in der Reihenfolge L1, L2, L3 Rechtslauf ergibt.

Durch Vertauschen zweier Außenleiter (z.B. L1 mit L2) wird Linkslauf erreicht.

Die Drehrichtungsangabe gilt ausgehend von der Blickrichtung auf den Wellenspiegel (DS).

Erdungs- und Schutzleiteranschluss

Die Motoren haben einen Schutzleiteranschluss in der Nähe der Klemmenplatte. Motoren in explosionsgeschützter Ausführung haben immer eine zusätzliche äußere Erdungsklemme am Gehäuse.

Betrieb an 60 Hz-Netzen

Motoren, die für 50 Hz ausgelegt sind, können auch an 60 Hz-Netzen betrieben werden. Den Einfluss auf die Bemessungsdaten entnehmen Sie bitte der folgenden Tabelle:

Frequenz Hz	Spannung Faktor – U _N	Leistung Faktor – P _N	Drehzahl Faktor – n _N	Moment Faktor – M _N	Anlaufmoment Faktor - M _A	Kippmoment Faktor - M _K
50	1,00	1,00	1,00	1,00	1,00	1,00
60	1,00	1,00	1,20	0,83	0,69	0,69
60	1,20	1,20	1,20	1,00	1,00	1,00

Betrieb am Frequenzumrichter

Beim Betrieb am Frequenzumrichter lässt sich die Drehzahl von Drehstromasynchronmotoren über die Frequenz stufenlos stellen bzw. regeln.

Die sorgfältige Projektierung ist ausschlaggebend für eine optimale Anpassung von Umrichter und Motor.

Die Motorauswahl richtet sich zunächst nach dem gewünschten Drehzahlbereich und dem Verlauf der Momentenkennlinie der Arbeitsmaschine. Danach erfolgen die Wicklungsauswahl und die Festlegung der sogenannten Eckfrequenz (Knickfrequenz).

In Abhängigkeit von der Minimal- bzw. Maximaldrehzahl muss überprüft werden, ob der Motor mit einem Fremdlüfter ausgerüstet werden muss. Dies ist von folgenden Faktoren abhängig:

- Baugröße
- Polzahl
- Betriebsart
- Umgebungsbedingungen
- vorhandenen thermischen Reserven

U/f = konstant bis 50 Hz:
Feldschwächbetrieb über 50 Hz
Wicklungsauslegung 230 / 400 V oder 400 / 690 V
maximale Umrichterausgangsspannung 230 V o. 400 V

		Netz		Umric	hter	
f	U	Schaltg.	P/P _n	M/M _n	P/P _n	M/M _n
Hz	V					
5	40 1)	Δ / Y ²⁾			0,10	1,00
50	400	Δ / Y ²⁾	1,00	1,00	1,00	1,00
87	400	Δ / Y ²⁾			1,00	0,57

- 1) Boosteinstellung vernachlässigt
- 2) abhängig von der Wicklungsauslegung

Beim Betrieb am Umrichter mit U/f = konstant wird der Fluss und das Drehmoment im Motor konstant gehalten. Der Umrichter, die Wicklungsauslegung und die Festlegung der Eckfrequenz entscheiden, in welchem Bereich dieser Betrieb möglich ist.

Im Feldschwächbetrieb bleibt die Spannung konstant und nur die Frequenz wird erhöht. Das Drehmoment sinkt proportional mit 1/f (Betrieb mit konstanter Leistung .

Die Tabellen zeigen die unterschiedlichen Leistungs- und Drehmomentverläufe im Frequenzbereich bis 87 Hz.

Boosteinstellung:

Im unteren Frequenzbereich muss mit Hilfe des statischen Boost die Umrichterausgangsspannung erhöht werden, um den Fluss konstant zu halten. Damit wird ein zu großer Schlupf vermieden, der zu einer unzulässigen Erwärmung und zum Ausfall des Motors führen kann. Die Höhe der Anhebung ist abhängig von der Baugröße, Polzahl sowie Motorauslegung und muss antriebsabhängig optimiert werden.

U/f = konstant bis 87 Hz:
Wicklungsauslegung 230 / 400 V
maximale Umrichterausgangsspannung 400 V

			Netz		Umrichter		
f	U	Schaltg.	P/P _n	M/M _n	P/P _n	M/M _n	
Hz	V						
5	23 1)	Δ			0,10	1,00	
50	230	Δ	1,00	1,00	1,00	1,00	
87	400	Δ			1,73	1,00	

- 1) Boosteinstellung vernachlässigt
- 2) abhängig von der Wicklungsauslegung

Sonderausführungen auf Anfrage

Motorschutz

Bei stromabhängigem Motorschutz muss der Schutzschalter auf den am Leistungsschild angegebenen Nennstrom eingestellt werden.

Bei Schalthäufigkeit, Kurzzeitbetrieb, Kühlmittelausfall oder großen Temperaturschwankungen ist der Motorschutz nur mit direkter Temperaturüberwachung sicher wirksam. Hierzu bieten wir auf Wunsch folgende Möglichkeiten an:

Temperaturschalter als Öffner (PTO)

Nach Überschreiten einer der Wärmeklasse entsprechenden Temperatur öffnet der Thermoschalter selbsttätig den Hilfsstromkreis und schaltet erst nach wesentlicher Temperaturänderung wieder ein. Schaltleistung: Bei Wechselspannung 250 V 1,6 A.

Kaltleiterschutz (PTC)

Die eingebauten Kaltleiter werden in Verbindung mit einem Auslösegerät betrieben. Die Temperaturfühler ändern bei einer der Wärmeklasse des Motors zugeordneten Nenn- Ansprech-Temperatur sprunghaft ihren Widerstand, der mittels eines Auslösegerätes im Steuerstromkreis ausgewertet wird. Das im Gerät eingebaute Relais verfügt über einen Umschaltkontakt, dessen Öffner und Schließer für die Steuerung benutzt werden können.

Vorteil: Schutzeinrichtung überwacht sich selbst; geringe Schalttoleranz; schnelles Wiedereinschalten des Antriebes.

Messung der Wicklungs- oder Lagertemperatur

Durch den Einbau von Platin-Temperaturfühlern PT 100 oder PT 1000 sind die Temperaturen in der Motorwicklung oder an der Lagerung direkt messbar.

Varianten mit KTY-Fühlern auf Anfrage.

Die Anschlüsse der Temperaturüberwachung sind standardmäßig auf eine Klemmenleiste im Hauptklemmenkasten geführt. Auf Wunsch kann ein separater Klemmenkasten für die Zusatzeinrichtungen angebracht werden.

Aufstellungshöhe und Kühlmitteltemperatur

Für Kühlmitteltemperaturen abweichend von 40° C oder Aufstellhöhen über 1000 m NN sind Leistungsreduzierungen erforderlich. Die Bemessungsleistung ist dann mit den Faktoren der nachstehenden Tabelle zu korrigieren:

Aufstellhöhe	Umgebungstemp	Umgebungstemperatur in °C									
über NN	40	45	50	60							
1000 m	1,00	0,96	0,92	0,82							
1500 m	0,97	0,95	0,89	0,79							
2000 m	0,94	0,9	0,86	0,77							
2500 m	0,90	0,86	0,83	0,74							
3000 m	0,86	0,82	0,79	0,70							
3500 m	0,82	0,79	0,75	0,67							
4000 m	0,77	0,74	0,71	0,63							

Kühlung (Belüftung)

Eigenbelüftung (IC 411):

Alle Standardmotoren werden mit einem robusten und temperaturbeständigen Kunststofflüfter ausgerüstet. Auf Kundenwunsch ist eine glasfaserverstärkte Ausführung bzw. ein Metalllüfter möglich.

Fremdbelüftung (IC 416):

Fremdlüfter werden u. a. zur Erhöhung der Nennleistung, bei hoher Schalthäufigkeit und wenn notwendig, beim Betrieb am Umrichter eingesetzt.

Wahlweise können Fremdlüfter mit einphasigem- bzw. dreiphasigem Anschluss geliefert werden.

Unbelüftet (IC 410):

Einsatz bei Sondermotoren mit angepasster Leistung bzw. eingeschränkter Einschaltdauer (auf Anfrage).

Flüssigkeitskühlung (IC 3S7):

Einsatz bei Hygiene-Motoren (Siehe Abschnitt Hygiene-Motoren).

Stillstandsheizung

Bei Motoren, für die infolge der klimatischen Verhältnisse die Gefahr einer Betauung der Wicklung besteht, z.B. stillstehende Motoren in feuchter Umgebung bzw. Motoren, die starken Temperaturschwankungen ausgesetzt sind, kann eine Stillstandsheizung vorgesehen werden.

Damit wird die Luft im Motor über die Außentemperatur erwärmt und ein Feuchtigkeitsniederschlag im Motorinnenraum verhindert. Während des Betriebs darf die Stillstandsheizung nicht eingeschaltet sein.

Motor-	Heizleistung	Anschluß-
baugröße		spannung
	W	V
63	16	230 ± 10%
71	25	230 ± 10%
80	25	230 ± 10%
90	52	230 ± 10%
100	52	230 ± 10%
112	52	230 ± 10%
132	42	230 ± 10%
160	80	230 ± 10%
180	80	230 ± 10%

Drehstrommotoren Baureihe R Drehstrommotoren Baureihe R

2-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

						- ,							
Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)	
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /M _N	M _K /M _N	J [kgm²]	m [kg]	
63K/2	IE2	0,18	2835	0,50	0,74	60,4	0,61	5,00	3,20	3,55	0,00014	4,50	
63L/2	IE2	0,25	2820	0,60	0,81	64,8	0,85	5,45	3,05	3,35	0,00019	5,00	
71K/2	IE2	0,37	2835	0,85	0,82	69,5	1,25	5,35	2,60	3,05	0,00034	6,00	
71L/2	IE2	0,55	2840	1,20	0,83	74,1	1,85	5,95	3,00	3,30	0,00042	7,00	
80K/2	IE3	0,75	2840	1,65	0,81	80,7	2,52	5,95	3,40	3,60	0,00064	9,00	
80L/2	IE3	1,10	2850	2,35	0,81	82,7	3,69	6,80	4,50	4,00	0,00079	10,00	
90L/2	IE3	1,50	2910	3,05	0,83	84,2	4,92	9,15	4,30	4,70	0,00155	17,00	
90L/2	IE3	2,20	2875	4,50	0,83	85,9	7,31	7,70	3,95	3,90	0,00155	17,00	
100V/2	IE3	3,00	2930	5,70	0,87	87,1	9,78	11,95	5,75	5,50	0,00360	30,00	
112M/20	IE3	4,00	2940	7,75	0,85	88,1	13,0	10,70	3,90	4,80	0,00557	38,00	
132S/20	IE3	5,50	2945	10,1	0,88	89,2	17,8	10,45	3,70	4,60	0,01220	48,00	
132S/200	IE3	7,50	2945	13,8	0,87	90,1	24,3	11,00	4,25	4,95	0,01470	54,00	
160M/20	IE3	11,00	2965	19,7	0,88	91,2	35,4	12,35	5,00	5,30	0,03940	119,00	
160L/2	IE3	15,00	2960	26,2	0,90	91,9	48,4	12,00	5,15	5,05	0,04590	135,00	
160L/20	IE3	18,50	2960	33,7	0,86	92,4	59,7	12,60	3,90	5,60	0,05640	141,00	
180L/20	IE3	22,00	2965	38,0	0,90	92,7	70,9	11,95	3,90	4,70	0,07910	180,00	
-	IE3	30,00		Technische Daten in Vorbereitung									

Änderungen vorbehalten

Drehstrommotoren Baureihe R

2-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3600 min⁻¹

Type	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K / M _N	J [kgm²]	m [kg]
63K/2	IE2	0,18	3455	0,45	0,70	64,0	0,50	5,85	3,95	4,40	0,00014	4,50
-	IE2	0,25		1		Technis	che Dater	n in Vorber	eitung		I	ı
71K/2	IE2	0,37	3445	0,79	0,76	72,0	1,03	6,25	3,45	3,85	0,00034	6,00
71L/2	IE2	0,55	3465	1,05	0,80	74,0	1,52	7,35	3,50	3,90	0,00042	7,00
80K/2	IE3	0,75	3455	1,45	0,80	77,0	2,07	7,30	4,45	4,15	0,00064	9,00
80L/2	IE3	1,10	3470	2,05	0,80	84,0	3,03	8,00	4,55	4,55	0,00079	10,00
90L/2	IE3	1,50	3515	2,60	0,84	85,5	4,08	10,70	4,35	5,25	0,00155	17,00
90L/2	IE3	2,20	3500	3,85	0,82	86,5	6,00	9,10	4,00	4,60	0,00155	17,00
100V/2	IE3	3,00	3530	4,80	0,88	88,5	8,12	13,50	4,80	5,50	0,00360	30,00
132S/200	IE3	4,00	3560	6,25	0,90	88,5	10,7	12,50	4,35	5,50	0,01470	54,00
132S/200	IE3	5,50	3555	8,55	0,90	89,5	14,8	11,96	4,15	5,30	0,01470	54,00
132S/200	IE3	7,50	3550	11,7	0,89	90,2	20,2	11,05	3,85	4,90	0,01470	54,00
160M/20	IE3	11,00	3565	16,8	0,89	91,0	29,5	12,35	4,50	4,90	0,03940	119,00
160M/20	IE3	15,00	3560	23,2	0,88	91,0	40,2	11,05	4,05	4,40	0,03940	119,00
-	IE3	18,50		•		Technis	che Dater	n in Vorber	eitung		•	•
-	IE3	22,00	1									
-	IE3	30,00	1									

Änderungen vorbehalten

Drehstrommotoren Baureihe R

4-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min-1

Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)		
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A /I _N	M _A /M _N	M _K /M _N	J [kgm²]	m [kg]		
63K/4	IE2	0,12	1360	0,40	0,71	59,1	0,84	3,10	2,05	2,30	0,00020	4,50		
63L/4	IE2	0,18	1370	0,60	0,63	64,7	1,25	3,40	2,95	2,95	0,00025	5,00		
71K/4	IE2	0,25	1415	0,70	0,70	68,5	1,69	4,35	2,30	2,65	0,00052	6,50		
71L/4	IE2	0,37	1405	0,95	0,76	72,7	2,51	4,55	2,40	2,60	0,00064	7,50		
80K/4	IE2	0,55	1405	1,40	0,74	77,1	3,74	4,65	2,35	2,65	0,00099	9,00		
80L/40	IE3	0,75	1425	1,85	0,72	82,5	5,03	6,00	3,30	3,15	0,00150	14,50		
90L/40	IE3	1,10	1445	2,50	0,75	84,1	7,27	6,85	3,50	4,00	0,00285	17,00		
90V/4	IE3	1,50	1440	3,35	0,76	85,3	9,95	7,20	3,40	4,15	0,00355	21,00		
100L/400	IE3	2,20	1450	4,65	0,79	86,7	14,5	8,10	3,85	4,25	0,00559	25,00		
100V/4	IE3	3,00	1445	6,25	0,80	87,7	19,8	7,95	3,55	4,20	0,00718	30,00		
112V/4	IE3	4,00	1455	8,15	0,80	88,6	26,3	8,80	3,70	4,55	0,01268	40,00		
132M/4	IE3	5,50	1465	11,2	0,79	89,6	35,9	8,35	3,75	4,00	0,02750	64,00		
132V/4	IE3	7,50	1465	15,4	0,78	90,4	48,9	8,85	4,25	4,50	0,03750	74,00		
160L/40	IE3	11,00	1475	21,7	0,80	91,4	71,2	9,60	4,00	3,90	0,08040	142,00		
160V/4	IE3	15,00	1475	29,9	0,79	92,1	97,1	8,95	3,80	3,85	0,09150	152,00		
180L/40	IE3	18,50	1475	34,9	0,83	92,6	119,8	9,25	4,10	3,60	0,16630	225,00		
-	IE3	22,00		Technische Daten in Vorbereitung										

Änderungen vorbehalten

4-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1800 min-1

Type	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	J [kgm²]	m [kg]
-	IE2	0,12		I		Tec	hnische Da	iten in Vorb	ereitung			l .
63L/4	IE2	0,18	1695	0,55	0,56	68,0	1,01	4,05	3,75	3,75	0,00025	5,00
71K/4	IE2	0,25	1730	0,65	0,65	70,0	1,38	5,05	2,65	3,15	0,00052	6,50
71L/4	IE2	0,37	1720	0,80	0,71	72,0	2,05	5,30	2,70	3,00	0,00637	7,50
80K/4	IE2	0,55	1720	1,20	0,71	75,5	3,05	5,50	2,70	3,05	0,00099	9,00
80L/40	IE3	0,75	1735	1,55	0,71	83,5	4,13	6,70	3,30	3,60	0,00150	14,50
90V/4	IE3	1,10	1745	2,05	0,77	86,5	6,02	8,40	3,70	4,30	0,00355	21,00
90V/4	IE3	1,50	1745	2,85	0,77	86,5	8,21	8,10	3,70	4,45	0,00355	21,00
112M/4	IE3	2,20	1760	3,95	0,78	89,5	11,9	9,75	3,15	4,70	0,01010	34,00
112V/4	IE3	3,00	1760	5,30	0,79	89,5	16,3	10,60	3,80	5,30	0,01268	40,00
132M/4	IE3	4,00	1770	7,05	0,79	89,5	21,6	9,95	4,20	4,45	0,02750	64,00
132V/4	IE3	5,50	1770	9,70	0,78	91,7	29,7	9,85	4,15	5,05	0,03750	74,00
160L/40	IE3	7,50	1780	12,7	0,81	91,7	40,2	9,40	3,25	3,95	0,08040	142,00
160V/4	IE3	11,00	1780	18,9	0,79	92,4	59,0	9,15	3,20	4,15	0,09150	152,00
160V/4	IE3	15,00	1775	25,4	0,80	93,0	80,7	8,25	2,85	3,75	0,09150	152,00
180L/40	IE3	18,50	1780	30,3	0,82	93,6	99,2	9,10	3,25	4,00	0,16630	225,00
-	IE3	22,00		ı	1	Tec	hnische Da	iten in Vorb	ereitung	1		I

Änderungen vorbehalten

6-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹

Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A /I _N	M _A /M _N	M _K /M _N	J [kgm²]	m [kg]
63K/6	-	0,09	870	0,40	0,75	43,3	0,99	2,50	1,70	1,80	0,00029	4,50
63L/6	IE2	0,12	915	0,55	0,57	50,6	1,25	2,60	2,65	2,75	0,00042	5,00
71K/6	IE2	0,18	930	0,65	0,65	56,6	1,85	3,05	1,80	2,30	0,00081	6,50
71L/6	IE2	0,25	925	0,80	0,69	61,6	2,58	3,25	1,75	2,20	0,00101	7,50
80K/6	IE2	0,37	930	1,10	0,70	67,6	3,80	3,55	2,00	2,35	0,00191	10,00
80L/6	IE2	0,55	915	1,50	0,74	73,1	5,74	3,80	2,05	2,20	0,00239	11,00
90L/60	IE3	0,75	945	2,05	0,66	78,9	7,58	5,00	2,95	3,20	0,00419	18,20
90V/6	IE3	1,10	950	2,85	0,69	81,0	11,1	5,15	2,45	3,05	0,00649	22,50
100V/6	IE3	1,50	955	3,60	0,73	82,5	15,0	5,80	2,90	3,25	0,01122	28,00
112V/6	IE3	2,20	965	5,25	0,70	84,3	21,8	7,40	3,70	4,20	0,02000	43,00
132M/6	IE3	3,00	970	7,50	0,67	85,6	29,5	6,55	3,35	3,40	0,03230	52,00
132M/600	IE3	4,00	975	10,2	0,65	86,8	39,2	7,50	3,85	3,80	0,04240	64,00
132V/6	IE3	5,50	970	12,5	0,72	88,0	54,1	7,55	3,60	3,70	0,05057	75,00
160L/6	IE3	7,50	980	15,5	0,77	89,1	73,1	9,00	3,20	4,35	0,10990	135,00
180L/6	IE3	11,00	980	23,1	0,76	90,3	107,2	8,70	3,20	4,20	0,16500	200,00

Änderungen vorbehalten

6-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1200 min-1

Туре	Wirkungsgrad- Klasse	A Bemessungs-	⊒ Bemessungs- i. drehzahl	E Bemessungs-	S Leistungs- Ø faktor	الا [%] Wirkungs-grad	NZ Bemessungs- moment	Anzugs- zu F Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	J [kgmeits- moment	B Gewicht (IM B3)
	-	0,09				Tec	hnische Da	ten in Vorb	ereitung			I
	IE2	0,12										
	IE2	0,18										
71L/6	IE2	0,25	1140	0,70	0,62	59,5	2,09	3,85	2,20	2,75	0,00101	7,50
	IE2	0,37				Tec	 hnische Dat	ten in Vorb	ereitung			
	IE2	0,55										
90V/6	IE3	0,75	1160	1,65	0,68	82,5	6,17	5,75	2,40	3,35	0,00649	22,50
	IE3	1,10				Tec	L hnische Dat	ten in Vorb	ereitung			
	IE3	1,50										
	IE3	2,20										
	IE3	3,00										
	IE3	4,00										
	IE3	5,50										
	IE3	7,50										
	IE3	11,00										

Änderungen vorbehalten

8-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min-1

Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	J [kgm²]	m [kg]
63K/8	-	0,06	665	0,45	0,60	32,1	0,86	1,60	1,95	2,10	0,00029	4,50
63L/8	-	0,09	630	0,50	0,67	38,8	1,36	1,70	2,20	2,20	0,00042	5,00
71K/8	IE2	0,12	695	0,65	0,56	39,8	1,65	2,35	1,85	2,30	0,00081	6,00
71L/8	IE2	0,18	685	0,85	0,58	45,9	2,51	2,35	1,75	2,00	0,00101	7,00
80K/8	IE2	0,25	690	1,05	0,60	50,6	3,46	2,65	1,80	2,10	0,00191	9,00
80L/8	IE2	0,37	685	1,45	0,61	56,1	5,16	2,90	2,00	2,25	0,00239	10,00
90L/8	IE2	0,55	695	2,15	0,57	61,7	7,56	2,80	1,75	2,05	0,00416	14,50
100L/80	IE3	0,75	710	2,35	0,61	75,0	10,1	4,10	2,10	2,65	0,00857	21,50
100V/8	IE3	1,10	710	3,30	0,62	77,7	14,8	4,10	2,35	2,65	0,01262	31,50
112M/80	IE3	1,50	715	4,50	0,60	79,7	20,0	4,40	2,55	2,80	0,01781	37,00
132S/8	IE3	2,20	715	5,60	0,70	81,9	29,4	4,75	2,30	2,80	0,02610	42,00
132M/8	IE3	3,00	715	7,50	0,70	83,5	40,1	5,00	2,55	2,85	0,03450	49,00
160M/8	IE3	4,00	720	9,40	0,72	84,8	53,1	4,95	1,95	2,60	0,06880	101,00
160M/80	IE3	5,50	725	12,2	0,74	86,2	72,4	5,40	1,90	2,65	0,08740	116,00
160L/8	IE3	7,50	730	18,0	0,68	87,3	98,1	6,00	2,40	3,15	0,11820	136,00
180L/8	IE3	11,00	725	22,9	0,78	88,6	144,9	5,90	1,95	2,55	0,20310	200,00

Änderungen vorbehalten

8-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 900 min-1

Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs-zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	J [kgm²]	m [kg]
	-	0,06				Tech	nnische Dat	en in Vorbe	reitung			
	-	0,09										
	IE2	0,12										
	IE2	0,18										
	IE2	0,25										
	IE2	0,37										
	IE2	0,55										
	IE3	0,75										
	IE3	1,10										
	IE3	1,50										
	IE3	2,20										
	IE3	3,00										
	IE3	4,00										
	IE3	5,50										
	IE3	7,50										
	IE3	11,00										
Ändorung		1 14	l									

Änderungen vorbehalten

12-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 500 min⁻¹

Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K /	J [kgm²]	m [kg]
71K/12	-	0,06	430	0,55	0,58	27,1	1,33	1,40	1,50	1,75	0,00081	6,50
71L/12	-	0,08	415	0,60	0,62	31,0	1,84	1,55	1,50	1,90	0,00101	7,50
80K/12	-	0,12	425	0,85	0,57	35,7	2,70	1,35	1,30	2,90	0,00191	10,00
80L/12	-	0,18	420	1,15	0,58	39,0	4,09	1,75	1,85	2,20	0,00239	11,00
90L/12	-	0,25	400	1,70	0,52	40,8	5,97	1,25	1,55	1,70	0,00416	16,50
100L/12	-	0,37	460	2,00	0,48	55,6	7,68	2,30	1,70	1,85	0,00657	21,50
100L/120	-	0,55	405	2,65	0,62	48,3	13,0	2,30	1,20	1,40	0,00857	24,00
112M/12	-	0,75	470	3,70	0,49	59,7	15,2	2,25	2,10	2,75	0,01580	31,00
132S/12	-	1,10	485	4,70	0,55	61,4	21,7	2,10	1,50	2,15	0,02620	46,00
132M/12	-	1,50	480	5,50	0,66	59,6	29,8	2,20	1,55	2,20	0,03230	52,00
132M/120	-	2,00	450	8,00	0,62	58,2	42,4	2,50	1,50	2,00	0,03840	55,00
160M/12	-	3,00	480	11,80	0,65	56,5	59,7	3,40	1,75	2,70	0,07920	112,00
160L/12	-	3,70	480	14,00	0,65	58,7	73,6	2,70	1,80	2,80	0,10990	135,00
180L/12	-	7,00	480	23,00	0,67	65,6	139,3	3,15	2,00	2,70	0,16450	200,00

Änderungen vorbehalten

12-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 600 min⁻¹

						,						
Type	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	J [kgm²]	m [kg]
	-	0,06	Technisc	he Daten in V	orbereitun	g						
	-	0,08										
	-	0,12										
	-	0,18	-									
	-	0,25	-									
	-	0,37	-									
	-	0,55	-									
	-	0,75	-									
	-	1,10	-									
	-	1,50	-									
	-	2,00										
	-	3,00	1									
	-	3,70	1									
	-	7,00	1									
5 .												

Änderungen vorbehalten

Drehstrommotoren **Baureihe R**Standard-Polumschaltbare Motoren

4-2 polig 400V-50Hz Δ/YY IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹ / 3000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	zu-Nenn- moment	trägheits- moment	IM B3
R	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
71K/4-2	0,22	1410	0,80	0,80	1,5	3,0	1,9	2,4	0.00050	0.5
	0,30	2830	1,00	0,80	1,0	3,4	1,9	2,5	0,00052	6,5
71L/4-2	0,30	1410	1,00	0,80	2,0	3,3	2,0	2,4	0,00064	7
	0,45	2820	1,30	0,80	1,5	3,9	1,9	2,4	0,00064	7
80K/4-2	0,50	1410	1,40	0,78	3,4	3,8	1,9	3,2	0,00099	9
	0,60	2800	2,20	0,78	2,0	3,5	1,9	2,8	0,00099	9
80L/4-2	0,75	1400	2,00	0,82	5,1	3,8	2,0	2,7	0,00126	10
	1,10	2800	2,80	0,90	3,8	3,7	2,0	2,9	0,00120	10
90S/4-2	1,00	1410	2,90	0,71	6,8	4,4	2,0	3,2	0,00193	13,5
	1,40	2800	4,20	0,80	4,8	4,3	2,0	2,9	0,00133	10,0
90L/4-2	1,30	1430	3,00	0,85	8,7	5,1	2,3	2,9	0,00243	15
	1,80	2820	4,30	0,88	6,1	5,1	2,0	2,9	0,00243	13
100L/4-2	1,80	1430	4,10	0,87	12	5,0	1,9	2,8	0,00384	19
	2,30	2830	5,60	0,86	7,8	5,2	1,9	2,9	0,00004	13
100L/4-20	2,40	1420	5,10	0,88	16	5,0	1,9	2,5	0,00498	22,5
	3,10	2840	6,70	0,93	10	5,0	2,0	3,2	0,00430	22,0
112M/4-2	3,60	1440	7,80	0,84	24	5,0	2,8	3,2	0,0101	32
	4,40	2890	9,70	0,86	15	6,0	3,0	4,0	0,0101	52
132S/4-2	4,80	1450	10,5	0,84	32	5,3	2,6	3,3	0,0210	47
	6,00	2900	14,0	0,84	20	5,4	2,5	3,2	0,0210	.,
132M/4-2	6,60	1470	14,5	0,83	43	5,6	3,0	3,4	0,0275	64
	8,00	2920	20,0	0,80	26	6,2	3,3	3,4	0,0210	0.
160M/4-2	9,00	1470	19,0	0,86	58	5,0	2,8	3,6	0,0512	109
	11,0	2910	25,0	0,90	36	6,0	2,9	3,9	0,0012	
160L/4-2	12,0	1470	22,0	0,88	78	5,0	2,7	3,0	0,0667	129
	15,0	2920	31,0	0,81	49	6,1	2,9	3,9	-,	.=-
180M/4-2	16,0	1470	29,0	0,89	104	5,0	2,6	2,9	0,1135	177
	18,5	2900	36,0	0,95	61	5,5	2,8	3,7	-, -,	
180L/4-2	18,5	1480	36,0	0,87	119	5,1	2,5	3,0	0,1346	200
	22,0	2930	45,0	0,90	72	6,3	3,8	4,0	, -	

Änderungen vorbehalten

6-2 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹ / 3000 min⁻¹

R P _N n _N I _N cos φ M _N I _A /I _N M _A /M _N M _K /M _N J kgm² cos φ M _N I _A /I _N M _A /M _N M _A /M _N M _A /M _N M _A /M _N J kgm² cos φ M _N I _A /I _N M _A /M _N M _A /M _N M _A /M _N J kgm² cos φ M _N I _A /I _N M _A /M _N M _A /M _N M _A /M _N J kgm² cos φ M _N I _A /I _N M _A /M _N M _A /M _N M _A /M _N J kgm² cos φ I _A I	المعالمة أدرور
R P _N n _N I _N cos φ M _N I _A /I _N M _A /M _N M _K /M _N J 71L/6-2 0,12 930 0,70 0,62 1,2 3,0 1,9 3,0 0,00637 80L/6-2 0,18 950 1,00 0,62 1,9 3,0 2,1 2,7 0,00126 90S/6-2 0,55 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00126 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 <td< th=""><th>ewicht</th></td<>	ewicht
R P _N n _N I _N cos φ M _N I _A /I _N M _A /M _N M _K /M _N J 71L/6-2 0,12 930 0,70 0,62 1,2 3,0 1,9 3,0 0,00637 80L/6-2 0,18 950 1,20 0,78 1,2 4,0 1,9 3,2 0,00637 80L/6-2 0,18 950 1,00 0,62 1,9 3,0 2,1 2,7 0,00126 90S/6-2 0,55 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00126 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 100L/6-2 0,50 960 2,20 0	M B3
kW min ⁻¹ A Nm kgm² c 71L/6-2 0,12 930 0,70 0,62 1,2 3,0 1,9 3,0 0,00637 80L/6-2 0,18 950 1,00 0,62 1,9 3,0 2,1 2,7 0,00126 90S/6-2 0,55 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00126 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498	
71L/6-2 0,12 930 0,70 0,62 1,2 3,0 1,9 3,0 0,00637 80L/6-2 0,18 950 1,00 0,62 1,9 3,0 2,1 2,7 0,00126 90S/6-2 0,25 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00126 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,4 3,7 0,00387 100L/6-20 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 0,70<	М
0,37 2840 1,20 0,78 1,2 4,0 1,9 3,2 0,00637 80L/6-2 0,18 950 1,00 0,62 1,9 3,0 2,1 2,7 0,00126 90S/6-2 0,55 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00126 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 112M/6-2 0,95 960 4,20 0,65 9,4 3,5	a. kg
80L/6-2 0,18 950 1,00 0,62 1,9 3,0 2,1 2,7 0,00126 90S/6-2 0,25 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00126 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,4 3,7 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	7,5
0,55 2900 1,60 0,75 1,9 4,9 2,1 3,1 0,00128 90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 2860 1,90 0,90 2,5 4,9 1,9 5,2 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 <td< td=""><td>7,5</td></td<>	7,5
90S/6-2 0,25 950 1,20 0,75 2,5 3,2 1,9 3,5 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	10
0,75 2860 1,90 0,90 2,5 4,9 1,9 5,2 0,00193 90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	
90L/6-2 0,37 960 1,85 0,65 3,7 3,4 2,7 4,1 0,00243 1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 2,0 3,6 2,0 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	14,5
1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 0,00243 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 0,00387 1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 0,00498 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	14,0
1,10 2880 3,00 0,83 3,6 5,7 2,7 3,1 100L/6-2 0,50 960 2,20 0,62 5,0 3,6 2,4 3,7 1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	16,5
1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 0,00387 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 0,00498 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	10,0
1,50 2880 3,70 0,85 5,0 5,5 2,3 3,9 100L/6-20 0,75 950 2,90 0,70 7,5 3,6 2,0 3,6 0,00498 2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	20
2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4 112M/6-2 0,95 960 4,20 0,65 9,4 3,5 2,2 3,6 0,0101	20
2,20 2880 4,80 0,88 7,3 5,8 1,8 4,4	23
	32
2,60 2920 6,40 0,90 8,5 5,6 2,0 4,0	02
132S/6-2 1,10 970 3,80 0,65 11 4,3 2,6 3,5 0,0210	47
3,00 2920 8,00 0,78 9,8 7,1 2,9 4,4	
132M/6-2 1,50 970 5,80 0,60 15 4,1 2,5 3,5 0,0275	64
4,50 2920 12,0 0,80 15 7,2 2,9 4,2	• •
160M/6-2 2,20 970 7,00 0,62 22 4,9 3,6 4,7 _{0,0512}	109
6,60 2920 17,0 0,82 22 6,5 2,8 3,9	
	129
9,00 2920 22,0 0,84 29 7,5 3,6 5,9	120
180M/6-2 4,00 970 14,0 0,60 39 4,9 4,1 4,4 _{0,1135}	177
11,0 2920 31,0 0,81 36 6,7 3,2 5,2	
180L/6-2 5,50 970 19,0 0,61 54 4,9 4,1 4,4 _{0.1346}	200
15,0 2920 39,0 0,82 49 7,0 3,6 5,3	_00

Änderungen vorbehalten

8-2 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 3000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	J					strom	moment	moment	moment	
R	P_N	n _N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
	kW	min ⁻¹	Α	-	Nm				kgm²	ca. kg
71L/8-2	0,07	700	0,80	0,60	1,0	1,9	2,2	2,8	_	
	0,30	2800	1,30	0,76	1,0	3,5	2,2	3,0	0,00637	7,5
80L/8-2	0,12	720	1,00	0,63	1,6	2,1	1,9	2,8	0.00400	40
	0,37	2820	1,30	0,76	1,3	4,1	2,0	3,0	0,00126	10
90S/8-2	0,18	710	1,30	0,65	2,4	1,9	1,9	3,6	0.00402	44.5
	0,55	2860	2,10	0,70	1,8	4,2	2,6	3,8	0,00193	14,5
90L/8-2	0,25	720	1,40	0,65	3,3	2,6	2,3	3,8	0,00243	16,5
	1,00	2840	2,70	0,85	3,4	5,2	1,9	2,3	0,00243	10,5
100L/8-20	0,37	720	1,70	0,70	4,9	2,4	1,5	3,3	0.00498	20
	1,50	2910	3,80	0,80	4,9	6,4	2,5	5,3	0,00490	20
100L/8-200	0,55	720	2,50	0,70	7,3	2,6	1,4	2,6	0,00498	23
	2,20	2920	5,40	0,82	7,2	5,5	1,9	3,5	0,00430	2
112M/8-2	0,65	720	3,00	0,60	8,6	2,9	2,7	3,3	0,0101	32
	2,40	2940	5,70	0,85	7,8	6,7	2,0	3,7	0,0101	52
132S/8-2	0,75	720	3,10	0,60	9,9	2,7	2,4	3,1	0,0210	47
	2,80	2950	9,00	0,71	9,1	7,1	2,6	3,3	0,0210	.,
132M/8-2	1,00	730	4,00	0,70	13	2,8	2,0	2,6	0,0275	64
	4,00	2950	11,0	0,75	13	7,8	3,9	4,9	0,02.0	•
160M/8-2	1,50	730	6,00	0,60	20	2,0	2,1	2,7	0,0512	109
	6,00	2940	16,0	0,82	19	4,3	3,3	5,5	-,	
160L/8-2	2,20	730	8,00	0,60	29	3,2	2,1	2,9	0,0667	129
	9,00	2940	22,0	0,83	29	8,2	4,2	5,3	-,	-
180M/8-2	2,50	730	9,00	0,68	33	2,9	1,8	2,9	0,1135	177
	10,0	2950	23,0	0,81	32	7,0	2,7	4,3	-,	
180L/8-2	3,00	730	9,00	0,72	39	3,0	1,6	1,9	0,1346	200
Änderunge	12,0	2950	25,0	0,80	39	7,2	2,6	4,4		

Änderungen vorbehalten

12-2 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 500 min-1 / 3000 min-1

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	zu-Nenn- moment	trägheits- moment	IM B3
R	P_N	n _N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
90S/12-2	0,09	400	0,90	0,80	2,1	1,4	1,7	2,5	0,00193	14,5
	0,75	2800	1,70	0,85	2,6	5,8	2,0	2,7	0,00193	14,5
90L/12-2	0,12	420	1,10	0,73	2,7	1,4	2,5	3,5	0,00243	16,5
	0,90	2860	2,60	0,82	3,0	6,0	2,1	2,8	0,00240	10,0
100L/12-2	0,18	420	1,30	0,74	4,1	1,5	1,4	2,8	0,00387	20
	1,10	2880	2,80	0,85	3,6	5,9	1,9	3,5	0,00001	20
100L/12-20	0,25	460	1,80	0,70	5,2	1,7	1,2	2,5	0,00198	23
	1,50	2900	4,20	0,85	4,9	6,4	1,8	3,8	0,00100	20
112M/12-2	0,37	460	2,50	0,60	7,7	1,6	1,5	2,4	0,0101	32
	2,20	2920	6,10	0,80	7,2	7,1	2,6	4,0	0,0101	02
132S/12-2	0,50	480	3,20	0,51	10	1,8	2,0	2,6	0,0210	47
	3,00	2920	8,30	0,76	9,8	6,7	2,3	4,9	0,0210	77
132M/12-2	0,65	470	4,00	0,50	13	1,7	1,6	2,7	0,2753	64
	4,00	2950	10,0	0,86	13	7,1	2,2	4,9	0,2700	04

Änderungen vorbehalten

6-4 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹ / 1500 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	· ·					strom	moment	moment	moment	
R	P_N	n _N	I _N	cos φ	M _N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
				σου φ		IAVIN	IVIAVIVI	IVIK/IVIN		
	kW	min ⁻¹	A		Nm				kgm ²	ca. kg
71L/6-4	0,12	930	0,70	0,71	1,3	2,0	1,6	2,0	0,00064	6,5
	0,18	1430	0,80	0,79	1,2	3,0	1,4	1,9		
80K/6-4	0,25	930	1,10	0,75	2,6	3,0	1,5	2,6	0,00191	10
	0,30	1420	1,20	0,77	2,0	3,3	1,9	3,7	,	
80L/6-4	0,30	920	1,20	0,74	3,1	3,1	1,6	3,4	0,00239	11
	0,45	1420	2,00	0,70	3,0	3,3	2,2	3,8	,	
90S/6-4	0,40	930	1,40	0,74	4,2	3,0	1,4	2,0	0,00193	13,5
	0,60	1450	2,1	0,70	4,1	4,2	1,5	2,3	-,	-,-
90L/6-4	0,60	940	1,90	0,78	6,1	3,5	1,7	2,6	0,00243	16,5
	0,90	1440	2,60	0,80	6,0	4,3	1,6	3,0	0,002.0	. 0,0
100L/6-4	0,80	950	2,70	0,72	8,0	3,3	1,6	3,5	0,00387	19
	1,20	1450	3,10	0,79	7,9	4,3	1,5	3,5	0,0000.	
100L/6-40	1,20	940	3,60	0,71	12	3,4	2,2	2,5	0.00498	22,5
	1,70	1450	4,60	0,76	11	4,5	2,8	3,4	0,00100	22,0
112M/6-4	1,70	960	4,60	0,75	17	4,2	2,2	2,9	0,0101	32
	2,50	1470	6,30	0,77	16	5,5	2,0	3,9	0,0101	02
132S/6-4	2,20	970	7,20	0,70	22	4,1	2,9	3,7	0,0210	47
	3,30	1470	8,00	0,80	21	5,2	1,8	3,4	0,0210	1
132M/6-4	3,00	960	10,0	0,65	30	3,5	2,7	3,3	0,0279	64
	4,40	1450	11,0	0,80	29	4,7	1,9	3,1	0,0210	5
160M/6-4	4,50	970	13,0	0,70	44	3,6	2,9	3,2	0,0512	112
	6,00	1470	14,0	0,83	39	4,8	2,1	3,0	0,0012	112
160L/6-4	6,00	970	16,0	0,70	59	4,3	2,7	3,0	0,0667	129
	8,00	1470	17,0	0,84	52	5,2	2,2	3,2	0,0007	129
180M/6-4	8,00	970	19,0	0,74	80	3,8	1,8	1,8	0,1135	177
	12,0	1470	25,0	0,85	80	4,5	1,8	2,0	0,1133	177
180L/6-4	9,50	960	24,0	0,74	94	3,9	2,6	2,6	0,1346	200
	14,0	1470	28,0	0,87	91	4,9	2,5	2,9	0,1340	200

Änderungen vorbehalten

8-4 polig 400V-50Hz Δ/YY IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 1500 min⁻¹

Varificilizati. 7 Defices art. 01 Synonione Brenzani. 700 min 7 1000 m										
Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	Moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	Ü					strom	moment	moment	moment	
Б	_									
R	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
71K/8-4	0,09	690	0,65	0,73	1,25	2,0	1,6	2,0	0,00081	6,5
7 110/0-4	0,12	1400	0,40	0,85	0,82	4,0	1,6	2,5	0,00001	0,5
71L/8-4	0,12	700	0,85	0,80	1,6	2,2	1,9	2,1	0,00101	7,5
7 12/0 4	0,18	1410	0,60	0,70	1,25	3,7	2,0	2,6	0,00101	7,0
80K/8-4	0,25	690	1,30	0,60	3,5	2,5	2,1	2,5	0,00191	10
00100 1	0,37	1390	1,10	0,76	2,5	3,9	21	2,7	0,00101	10
80L/8-4	0,33	690	1,50	0,62	4,6	2,3	2,0	2,0	0,00239	11
002/0 .	0,55	1380	1,50	0,85	3,8	3,4	1,8	2,6	0,00200	
90S/8-4	0,40	700	2,10	0,65	5,5	2,1	1,7	2,3	0,00303	14,5
	0,70	1390	2,00	0,87	4,8	3,0	1,6	2,3	0,0000	,0
90L/8-4	0,60	690	2,30	0,70	8,3	2,5	1,9	2,2	0,00416	16,5
	0,90	1400	2,30	0,88	6,1	3,5	1,9	2,3	-,	-,-
100L/8-4	0,75	710	3,20	0,67	10	2,6	1,8	2,2	0,00657	20
	1,30	1400	3,40	0,87	8,9	3,6	1,8	2,4	,	
100L/8-40	1,00	710	3,60	0,70	13	2,8	1,9	2,3	0,00857	23
	1,60	1410	4,00	0,89	11	3,5	1,8	2,6		
112M/8-4	1,50	710	4,50	0,70	20	3,7	1,9	2,4	0,0158	32
	2,50	1410	5,20	0,90	17	4,4	1,8	2,4		
132S/8-4	2,40	720	7,40	0,70	32	3,3	2,0	3,3	0,0262	47
	3,50	1450	7,60	0,88	23	4,8	2,0	2,9		
132M/8-4	2,70	720	7,50	0,73	36	3,1	1,8	2,5	0,0323	52
	4,00	1440	8,00	0,90	27	4,7	2,1	2,5		
132M/8-40	3,20	720	10,0	0,70	42	3,6	2,5	3,2	0,0384	64
	5,10 4,00	1460 720	11,0 10,0	0,88 0,76	33 53	5,3 5,0	2,3 1,8	3,0 2,7		
160M/8-4									0,0792	112
	5,50 5,00	1450 720	12,0 12,0	0,92 0,80	36 66	6,5 3,5	1,9 1,8	3,3 2,5		
160M/8-40	5,00 7,50	1440		0,80					0,0792	119
	7,50	720	16,0 17,0	0,93	50 93	4,3 3,9	1,8 1,7	2,8 2,3		
160L/8-4	10,0	1450	21,0	0,76	93 66	5,4	1,7	2,8	0,1089	135
	10,0	720	22,0	0,89	133	5,0	2,4	3,2		
180L/8-4	15,0	1450	30,0	0,80	99	5,0 5,9	2,4	3,2	0,16450	200
ndoruna			30,0	0,90	99	5,5	۷,۱	٥,٧		

Änderungen vorbehalten

8-6 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 1000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	_					strom	moment	moment	moment	
R	P_N	n _N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M _K /M _N	J	M
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
000/0.0	0,30	670	1,20	0,81	4,3	2,2	1,3	2,7	0.00000	44.5
90\$/8-6	0,50	930	1,50	0,76	5,1	2,8	1,5	2,9	0,00303	14,5
90L/8-6	0,40	690	1,70	0,62	5,5	2,3	1,5	1,8	0,00416	16
90L/6-0	0,60	930	2,10	0,80	6,2	3,0	1,5	1,8	0,00410	10
100L/8-6	0,60	700	2,00	0,83	8,2	2,5	1,5	3,0	0,00657	20
100L/6-0	0,80	940	2,50	0,78	8,1	3,5	1,7	3,2	0,00037	20
100L/8-60	0,70	700	2,20	0,87	9,6	2,7	1,6	3,0	0,00857	23
1002/0-00	1,00	940	2,80	0,77	10	4,1	1,7	3,3	0,00001	25
112M/8-6	0,90	700	3,00	0,70	12	2,9	2,0	2,9	0,0158	32
112101/0-0	1,30	960	3,40	0,73	13	4,6	2,5	3,2	0,0100	02
132S/8-6	1,50	720	4,80	0,70	20	3,1	1,4	2,6	0,0262	47
1020/0 0	2,20	950	5,50	0,75	22	3,3	1,7	2,7	0,0202	77
132M/8-6	2,20	720	6,90	0,70	29	3,5	1,7	3,2	0,0384	55
102111/0 0	3,00	950	7,60	0,76	30	4,5	1,9	2,4	0,0004	00
160M/8-6	3,50	730	9,0	0,70	46	5,6	2,0	3,2	0,0792	112
	5,50	970	12,0	0,83	54	5,5	1,5	2,5	0,0.02	
160L/8-6	5,00	720	14,0	0,72	66	3,9	1,8	3,0	0,1089	135
. 302, 0 0	7,00	950	16,0	0,80	70	5,3	2,3	3,1	3,1003	100
180L/8-6	7,00	720	17,0	0,75	93	4,3	1,8	2,9	0,2059	200
	9,50	960	22,0	0,82	95	5,7	2,6	3,0	-,	

Änderungen vorbehalten

12-6 polig 400V-50Hz Δ/YY IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 500 min⁻¹ / 1000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	Moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
						strom	moment	moment	moment	
R	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
90S/12-6	0,15	440	1,00	0,60	3,3	1,6	1,4	1,4	0,00303	15
903/12-0	0,30	920	0,90	0,83	3,1	2,7	1,4	1,5	0,00303	13
90L/12-6	0,20	430	1,40	0,63	4,4	1,5	1,4	1,7	0,00416	16,5
30L/12-0	0,40	930	1,10	0,83	4,1	3,5	1,5	2,3	0,00410	10,5
100L/12-6	0,30	430	1,80	0,61	6,7	1,9	1,4	1,9	0.00657	20
100L/12-0	0,60	920	1,80	0,81	6,2	3,4	1,4	2,3	0,00007	20
100L/12-60	0,45	440	2,40	0,60	9,8	2,3	1,8	2,1	0,00857	23
1002/12 00	0,90	920	2,20	0,82	9,3	3,6	1,6	2,4	0,00007	20
112M/12-6	0,70	450	3,60	0,60	15	2,5	1,6	1,8	0,01580	32
1 12101/ 12-0	1,40	940	3,60	0,80	14	4,3	1,9	2,1	0,01000	02
132S/12-6	1,00	460	5,00	0,60	21	2,6	1,6	1,9	0,0262	47
1020/12 0	2,00	940	5,00	0,78	20	4,6	1,6	2,6	0,0202	-11
132M/12-6	1,50	470	7,30	0,50	30	2,6	2,2	2,3	0,0384	64
102101/12-0	3,00	945	7,20	0,80	30	4,0	1,8	2,5	0,0004	04
160M/12-6	2,20	470	8,50	0,55	45	2,3	1,9	2,4	0,0792	109
100W/12-0	4,50	940	11,0	0,82	46	4,2	1,8	2,5	0,0732	103
160L/12-6	3,70	480	14,0	0,58	74	2,8	2,0	2,5	0,1089	129
100L/12=0	7,50	960	16,5	0,85	75	4,9	1,9	2,4	0,1009	123
180L/12-6	5,00	480	17,0	0,60	99	3,0	2,1	2,5	0,1649	200
1302/12-0	11,0	960	22,0	0,90	109	5,0	2,0	2,6	3, 10-13	200

Änderungen vorbehalten

Drehstrommotoren **Baureihe R**Standard-Polumschaltbare Motoren, Lüfterantriebe

4-2 polig 400V-50Hz Y/YY IC 411 Lüfter

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹ / 3000 min⁻¹

vaimentas.		20	CD3art. C	' 1	O y mor morne	Dionzam.	1000 111111	, 0000 111		
Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	Moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	J					strom	moment	moment	moment	
R	P_N	n_N	I _N	cos φ	M _N	I _A /I _N	M _A /M _N	$M_{\mbox{\scriptsize K}}/M_{\mbox{\scriptsize N}}$	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
71K/4-2L	0,08	1410	0,30	0,80	0,54	3,8	2,2	2,7	0,00035	6
/ IN/4-2L	0,37	2860	1,06	0,78	1,24	4,7	2,4	3,3	0,00033	O
71L/4-2L	0,10	1410	0,37	0,81	0,68	3,9	2,4	2,9	0,00045	7
/ 1L/4-2L	0,50	2860	1,60	0,79	1,67	4,8	2,4	3,3	0,00043	,
80K/4-2L	0,18	1410	0,55	0,82	1,2	4,0	2,0	2,5	0,00064	9
00N/4-2L	0,75	2860	1,80	0,82	2,5	4,5	1,8	2,7	0,00004	9
80L/4-2L	0,22	1410	0,61	0,82	1,5	4,0	2,0	2,5	0,00079	10
00L/4-2L	1,10	2830	2,65	0,82	3,7	4,5	1,7	2,6	0,00073	10
90S/4-2L	0,37	1400	0,95	0,83	2,5	4,8	2,0	2,5	0,00193	13,5
300/4-2L	1,40	2850	3,50	0,82	4,7	4,9	1,9	2,8	0,00100	10,0
90L/4-2L	0,50	1420	1,25	0,83	3,4	5,2	2,4	2,9	0,00243	17
90L/4-2L	2,00	2860	5,10	0,82	6,7	5,3	1,7	2,6	0,00243	17
100L/4-2L	0,60	1410	1,40	0,86	4,1	4,4	1,7	2,2	0,00387	19,5
1002/4 22	2,40	2850	5,80	0,84	8,0	4,5	2,0	2,9	0,00001	10,0
100L/4-20L	0,80	1440	1,80	0,86	5,3	6,0	2,1	2,6	0,00498	24
1002/4-202	3,00	2885	8,10	0,84	10	5,9	2,1	3,0	0,00430	27
112M/4-2L	1,10	1420	2,30	0,86	7,4	5,2	1,8	2,3	0,0101	29
11210174 22	4,10	2895	8,50	0,86	14	6,5	2,0	2,9	0,0101	20
132S/4-2L	1,50	1450	3,30	0,87	10	6,5	1,9	2,4	0,0122	42
1020/122	6,00	2925	12,6	0,88	20	7,5	2,2	3,1	0,0122	
132M/4-2L	2,20	1450	4,50	0,87	14	6,5	2,0	2,5	0,0190	48
1021111 1 22	9,00	2915	18,6	0,89	29	7,2	2,1	3,0	0,0100	
160M/4-2L	3,00	1460	6,20	0,88	20	5,3	2,1	2,6	0,0630	119
. 50111/1 22	12,0	2915	24,4	0,90	39	6,1	2,2	3,1	3,000	
160L/4-2L	4,00	1465	8,90	0,88	26	6,7	2,8	3,3	0,0750	135
. 002, . 22	16,0	2930	32,5	0,91	52	7,0	2,9	3,8	3,3.33	
180M/4-2L	5,50	1470	11,0	0,89	36	5,8	2,4	2,9	0,1100	174
. 30, . 22	20,0	2950	40,0	0,91	65	6,8	2,4	3,3	5,55	

Änderungen vorbehalten

6-4 polig 400V-50Hz Y/Y IC 411 Lüfter

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹ / 1500 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	loiotailig	a. ca	0	i anto		strom	moment	moment	moment	20
R	P _N	n_N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm ²	ca. kg
001//0 41	0,12	935	0,80	0,70	1,2	2,2	1,3	4,0	0.00000	40
80K/6-4L	0,37	1440	1,40	0,77	2,5	3,2	1,4	3,4	0,00099	10
80L/6-4L	0,18	910	0,90	0,80	1,9	2,1	1,3	4,8	0,00126	11
00L/0-4L	0,55	1440	1,90	0,75	3,6	3,4	2,1	3,3	0,00120	11
90S/6-4L	0,25	910	1,00	0,85	2,6	2,4	1,3	3,7	0,00193	13,5
903/0-4L	0,75	1450	2,10	0,77	4,9	4,6	2,2	3,3	0,00193	13,3
90L/6-4L	0,40	930	1,50	0,80	4,1	3,0	1,4	2,6	0,00243	16,5
90L/0-4L	1,20	1450	3,80	0,75	7,9	4,1	2,5	3,6	0,00243	10,5
100L/6-4L	0,55	920	2,00	0,79	5,7	2,8	1,5	2,7	0,00378	19
1002/0-42	1,50	1450	4,40	0,72	9,9	3,9	1,9	2,9	0,00070	13
100L/6-40L	0,75	960	2,60	0,75	7,5	3,2	1,9	3,3	0,00498	22,5
1002/0-402	2,20	1450	6,10	0,72	14	4,3	2,2	3,3	0,00430	22,0
112M/6-4L	1,00	950	3,00	0,72	10	3,5	1,5	2,8	0,0101	32
1 12W/0-4L	3,00	1450	7,30	0,78	20	5,5	2,2	3,7	0,0101	02
132S/6-4L	1,50	970	4,50	0,73	15	3,5	2,0	2,9	0,0210	47
1020/0 42	4,20	1470	10,0	0,77	27	5,2	2,4	3,2	0,0210	77
132M/6-4L	2,00	970	5,80	0,75	20	3,9	2,0	2,8	0,0275	57
102111/0 42	6,00	1470	13,5	0,80	39	5,1	2,3	3,3	0,0210	01
160M/6-4L	3,00	970	8,00	0,73	30	4,2	2,4	2,9	0,0512	112
10011110 12	8,50	1470	18,0	0,82	55	4,6	2,1	3,0	0,0012	
160L/6-4L	3,80	970	12,0	0,66	37	4,5	2,9	3,6	0,0667	129
1002/0 12	11,0	1470	24,0	0,85	71	5,0	2,8	3,2	0,0001	120
180M/6-4L	4,80	970	13,0	0,76	47	4,1	2,5	2,6	0,1135	169
. 3011// 0 42	14,0	1470	31,0	0,87	91	4,3	2,3	2,5	3,1100	100
180L/6-4I	5,50	980	18,0	0,70	54	5,0	2,9	3,4	0.1346	191
	16,0	1470	35,0	0,85	104	5,5	2,8	3,3	5,.5.5	
180L/6-4L									0,1346	191

Änderungen vorbehalten

8-4 polig 400V-50Hz Y/YY IC 411 Lüfter

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 1500 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	Moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
						strom	moment	moment	moment	
R	P _N	n _N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	M _K /M _N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
80K/8-4L	0,125	690	0,65	0,70	1,7	2,1	1,6	2,7	0,00191	10
80K/8-4L	0,50	1380	2,00	0,72	3,5	2,8	1,7	2,8	0,00191	10
80L/8-4L	0,18	690	0,80	0,69	2,5	2,7	1,6	2,3	0,00239	11
00L/0-4L	0,70	1410	2,70	0,75	4,7	3,5	1,7	2,9	0,00239	11
90S/8-4L	0,25	700	1,30	0,70	3,4	2,0	1,5	2,7	0,00193	14,5
903/0-4L	1,00	1430	3,00	0,78	6,7	3,9	1,6	3,0	0,00193	14,5
90L/8-4L	0,35	680	1,30	0,70	4,9	2,4	1,6	1,9	0,00243	16,5
30L/0-4L	1,40	1400	3,40	0,87	9,6	4,1	1,9	2,7	0,00243	10,5
100L/8-4L	0,48	690	1,80	0,67	6,6	2,3	1,6	2,0	0,00387	20
1002/0-42	1,90	1430	4,50	0,85	13	4,2	1,9	3,1	0,00001	20
100L/8-40L	0,60	700	2,40	0,70	8,2	2,5	1,6	2,2	0.00498	23
1002/0-402	2,50	1420	6,00	0,85	17	3,9	1,7	2,5	0,00430	20
112M/8-4L	0,80	710	2,80	0,70	11	3,0	2,0	2,4	0,0101	32
112W/0-4L	3,20	1450	7,20	0,80	21	5,3	2,2	3,5	0,0101	32
132S/8-4L	1,30	710	4,20	0,65	17	2,6	1,6	2,3	0,0210	47
1323/0-4L	5,00	1440	11,0	0,82	33	4,4	1,8	2,7	0,0210	41
132M/8-4L	1,70	710	5,50	0,65	23	2,6	2,0	2,2	0,0275	64
1321VI/O-4L	6,50	1450	14,0	0,85	43	4,9	2,4	3,2	0,0273	04
160M/8-4L	3,00	710	8,40	0,74	40	2,3	1,4	1,6	0,0512	112
100W/0-4L	10,0	1460	20,0	0,88	65	4,3	1,9	2,5	0,0012	112
160L/8-4L	3,50	720	10,0	0,72	46	2,3	1,5	1,5	0,0668	135
1001/0-41	13,0	1460	26,0	0,90	85	4,0	1,7	2,2	0,0000	100
180M/8-4L	4,00	720	12,0	0,70	53	2,7	1,8	2,0	0,1135	177
1001VI/0-4L	16,0	1460	33,0	0,85	105	4,4	2,5	2,8	0,1133	177
180L/8-4L	5,50	720	16,0	0,70	73	2,8	1,9	1,9	0,1346	200
130L/0 -TL	20,0	1460	40,0	0,87	131	5,0	2,7	3,0	0,10-0	200

Änderungen vorbehalten

8-6 polig 400V-50Hz Y/Y IC 411 Lüfter

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 1000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
						strom	moment	moment	moment	
R	P_N	n _N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
				τος φ		IA/IN	IVIA/IVIN	IVIK/IVIN		
	kW	min ⁻¹	Α		Nm				kgm ²	ca. kg
80K/8-6L	0,11	710	0,80	0,70	1,5	2,0	1,5	3,2	0,00191	10
	0,22	950	1,00	0,70	2,2	3,0	1,8	3,0	-,	
80L/8-6L	0,15	710	1,10	0,73	2,0	1,9	1,5	3,5	0,00239	11
002/0 02	0,30	930	1,40	0,70	3,1	3,1	1,5	2,9	0,00200	• • •
90S/8-6L	0,22	710	1,10	0,78	3,0	1,9	1,5	3,7	0,00303	13,5
000,000	0,44	930	1,40	0,80	4,5	2,7	1,5	3,1	0,0000	10,0
90L/8-6L	0,33	700	1,40	0,74	4,5	2,5	1,5	2,5	0,00416	16,5
00L/0 0L	0,66	930	2,00	0,70	6,8	3,1	1,5	3,2	0,00410	10,0
100L/8-6L	0,40	700	1,70	0,73	5,5	2,6	1,5	2,3	0,00657	19
100L/0-0L	0,80	920	2,80	0,74	8,3	3,3	1,5	3,2	0,00007	15
100L/8-60L	0,55	710	2,10	0,75	7,4	2,8	1,5	2,9	0,00857	22,5
1002/0-002	1,10	940	3,10	0,75	11	3,8	1,8	3,3	0,00007	22,0
112M/8-6L	0,80	720	3,00	0,71	11	3,3	1,7	2,6	0,0158	32
112IVI/O-OL	1,60	955	4,40	0,74	16	4,4	2,4	3,2	0,0130	32
132S/8-6L	1,10	720	3,50	0,70	15	3,2	1,4	3,3	0,0262	47
1020/0-0L	2,20	960	5,50	0,76	22	3,8	1,9	3,1	0,0202	71
132M/8-6L	1,75	720	6,00	0,70	23	2,4	1,9	2,1	0,0384	57
132IVI/O-OL	3,50	950	9,50	0,72	35	3,1	2,1	2,3	0,0304	31
160M/8-6L	2,20	730	7,50	0,62	29	5,5	3,0	4,2	0,0894	112
TOOW/O-OL	4,80	970	14,0	0,82	47	4,6	2,0	3,2	0,0094	112
160L/8-6L	3,30	730	13,0	0,60	43	4,8	2,9	4,1	0,1203	129
100L/0-0L	7,00	970	19,5	0,70	69	5,0	2,2	3,5	0,1203	129
180L/8-6L	4,70	730	14,0	0,63	61	4,9	2,3	3,7	0,2059	191
100L/0-0L	9,50	970	22,0	0,80	94	6,0	2,3	2,7	0,2059	191

Änderungen vorbehalten

12-6 polig 400V-50Hz Y/YY IC 411 Lüfter

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 500 min⁻¹ / 1000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	Moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
						strom	moment	moment	moment	
	_									
R	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
80K/12-6L	0,04	455	0,40	0,60	0,84	2,0	1,6	2,0	0,00191	10
001V 12-0L	0,25	940	0,90	0,78	2,5	3,2	1,7	2,5	0,00191	10
80L/12-6L	0,05	460	0,50	0,60	1,0	2,0	1,7	2,2	0,00239	11
00L/12-0L	0,32	940	1,20	0,79	3,2	3,2	1,6	2,5	0,00233	11
90S/12-6L	0,10	450	0,68	0,61	2,1	2,0	1,6	2,1	0,00303	14,5
903/12-0L	0,55	940	2,00	0,80	5,6	3,2	1,7	2,6	0,00303	14,5
90L/12-6L	0,15	465	1,40	0,62	3,1	2,0	1,8	2,3	0,00416	16,5
30L/12-0L	0,80	955	3,30	0,81	8,0	3,2	1,8	2,7	0,00410	10,0
100L/12-6L	0,22	465	2,00	0,64	4,5	2,0	1,7	1,9	0,00657	20
100L/12-0L	0,90	955	2,60	0,80	9,0	4,5	1,9	2,8	0,00001	20
100L/12-60L	0,30	475	2,80	0,66	6,0	2,0	1,7	2,0	0,00857	23
100L/12-00L	1,20	960	3,30	0,81	12	4,6	2,0	2,9	0,00001	2
112M/12-6L	0,35	460	1,50	0,54	7,5	2,5	1,6	2,1	0,1580	32
112101/12 02	2,20	940	5,10	0,82	20	4,5	1,7	2,9	0,1000	5
132S/12-6L	0,70	480	2,80	0,61	14	2,8	1,5	2,1	0,0262	47
1020/12 02	3,20	955	8,30	0,71	33	3,5	1,7	2,9	0,0202	77
132M/12-6L	1,00	460	4,20	0,59	22	2,8	1,4	1,8	0.0384	64
102111/12 02	4,40	960	11,3	0,59	44	4,8	1,4	2,3	0,000	7
160M/12-6L	1,30	465	3,80	0,70	27	2,7	1,5	1,9	0,0792	112
100101/12 02	6,20	965	14,0	0,85	61	5,6	1,9	2,8	0,0702	112
160L/12-6L	1,80	470	5,00	0,72	37	3,5	1,5	1,9	0,1088	135
1302/12 02	8,40	965	18,0	0,87	83	6,4	2,0	2,9	5,1000	100
180L/12-60L	3,00	475	11,0	0,55	60	3,8	1,5	1,9	0,2058	200
1002/12-002	12,5	970	28,0	0,74	123	6,2	1,7	2,6	5,2000	200

Änderungen vorbehalten

Drehstrommotoren **Baureihe R** Reluktanzmotoren

Der Reluktanzmotor vereinigt Eigenschaften von Asynchron- und Synchronmaschine. Die Besonderheit liegt in einem Rotor mit ausgeprägten Polen und Dämpferkäfig. Dadurch läuft der Reluktanzmotor asynchron an und geht dann in den Synchronismus über. Mit der synchronen Drehzahl läuft er bis das Reaktionsmoment (synchrones Kippmoment bzw. Außertrittfallmoment) überschritten wird.

Diese Eigenschaft macht den Reluktanzmotor für viele Antriebsfälle interessant, bei denen bisher die aufwendigere Servotechnik bzw. Asynchronmotoren mit Gebersystemen eingesetzt werden. Das sind vor allem Anlagen, in denen Gleichlauf für mehrere Antriebe oder bei unterschiedlichen Belastungen konstante Drehzahlen gefordert werden. Ein weiterer Vorteil ist die robuste und wartungsfreie Konstruktion.

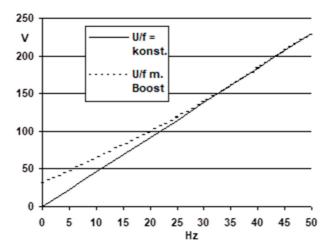
Mechanische Ausführung

Da beim Reluktanzmotor der normale Stator des Asynchronmotors genutzt wird, lassen sich prinzipiell alle mechanischen Varianten verwirklichen, wie sie auch für den Asynchronmotor im Planungsteil beschrieben sind. Außerdem können die Motoren wahlweise auch mit einer mechanischen Federkraftbremse ausgerüstet werden. Wir empfehlen eine Bremse in geräuschreduzierter Ausführung (siehe Abschnitt Bremsmotoren).

Elektrische Ausführung

Standardmäßig fertigt HEW das Isolationssystem in der Wärmeklasse F. Dabei wird ein hochwertiger Lackdraht verwendet und die Wicklungen werden mit Phasenisolation gefertigt. Dieses garantiert eine hohe elektrische Festigkeit bei Beanspruchungen durch auftretende Schalt-und Kommutierungsspannungen sowie beim Betrieb am Frequenzumrichter. Wahlweise können die Motoren mit einem Kaltleiter bzw. Thermoschalter als Motorschutz ausgerüstet werden. Die Reluktanzmotoren sind in 2-, 4- u. 6-poliger Ausführung lieferbar. Sonderwicklungen für spezielle Antriebslösungen sind auf Anfrage möglich.

Reluktanzmotor am Frequenzumrichter


Die Auswahl des Motors erfolgt entsprechend dem geforderten Lastdrehmoment und der Minimal- bzw. Maximalfrequenz.

Für hochdynamische Antriebe ist das Beschleunigungsmoment zu beachten.

In Abhängigkeit von den Frequenz- bzw. Drehzahlgrenzen ist eine eigenbelüftete oder fremdbelüftete Variante zu wählen.

Eigenbelüftete Reluktanzmotoren sind so dimensioniert, dass die in den technischen Daten angegebenen Nennmomente ab ca. 20 Hz bis zur Eckfrequenz dauernd abgegeben werden können. Soll der Motor mit Nennmoment unter 20 Hz betrieben werden, ist nur noch eine reduzierte Einschaltdauer erlaubt bzw. ein Fremdlüfter erforderlich.

Da im unteren Frequenzbereich bei U/f = konstant der Fluss und damit das Drehmoment nicht konstant bleibt, muss über den statischen Boost die Spannung angehoben werden. Die Höhe der Anhebung ist abhängig von der Baugröße, Polzahl und Motorauslegung und muss antriebsabhängig optimiert werden.

Das Bild zeigt den prinzipiellen Verlauf der U/f - Kennlinien ohne Boost und mit aktiviertem Boost. Die konkreten Möglichkeiten der Boosteinstellung richten sich nach dem Umrichterfabrikat. Das maximale Moment des Reluktanzmotors ist proportional zum Quadrat der Spannung. Da das Verhältnis von Außertrittfallmoment zu Nennmoment bei ungefähr 1,6 liegt, ist ein Betrieb im Feldschwächbereich (U = konstant) nicht sinnvoll bzw. nur begrenzt möglich.

2-polig 400V-50Hz IC 411 Reluktanzmotor

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

					•					
Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
						strom	moment	moment	moment	
RR	P_N	n _N	I_N	cos φ	M_N	I _A /I _N	M_A/M_N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
63K/2	0,09	3000	0,60	0,45	0,29	5,4	4,0	1,5	0,00014	4,5
63L/2	0,12	3000	0,80	0,45	0,38	5,5	4,1	1,5	0,00019	5
71K/2	0,18	3000	1,20	0,50	0,57	6,0	4,1	1,6	0,00034	6
71L/2	0,25	3000	1,40	0,45	0,80	6,0	4,0	1,6	0,00035	7
80K/2	0,37	3000	1,90	0,45	1,18	6,4	4,0	1,6	0,00064	9
80L/2	0,55	3000	2,70	0,45	1,75	6,5	4,2	1,6	0,00079	10
90S/2	0,75	3000	3,50	0,53	2,4	7,0	4,1	1,6	0,00124	14
90L/2	1,1	3000	5,20	0,50	3,5	7,5	4,1	1,6	0,00155	17
100L/2	1,50	3000	7,00	0,50	4,8	8,5	4,2	1,6	0,00255	20
112M/2	2,20	3000	9,00	0,50	7,0	9,0	4,2	1,6	0,00430	29

Änderungen vorbehalten

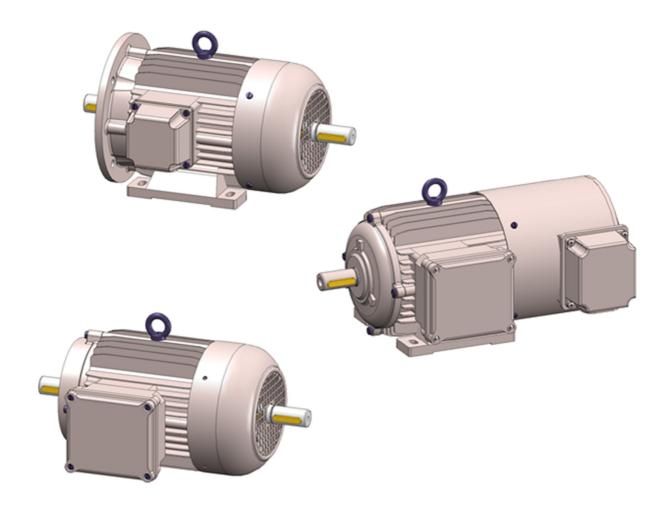
4-polig 400V-50Hz IC 411 Reluktanzmotor

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	zu-Nenn- moment	trägheits- moment	IM B3
RR	P_N	n _N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
63K/4	0,06	1500	0,50	0,45	0,38	3,5	4,0	1,6	0,00020	4,5
63L/4	0,09	1500	0,70	0,45	0,57	3,6	4,0	1,6	0,00025	5
71K/4	0,12	1500	0,75	0,50	0,76	3,8	3,8	1,7	0,00052	6,5
71L/4	0,18	1500	1,15	0,50	1,1	4,0	3,9	1,7	0,00637	7,5
80K/4	0,25	1500	1,60	0,50	1,6	4,0	4,4	1,7	0,00099	9
80L/4	0,37	1500	2,10	0,50	2,4	4,2	4,5	1,7	0,00126	10
90S/4	0,55	1500	2,80	0,50	3,5	5,5	4,5	1,6	0,00193	13,5
90L/4	0,75	1500	3,70	0,50	4,8	5,8	4,5	1,6	0,00243	15
100L/4	1,10	1500	5,20	0,50	7,0	6,5	4,5	1,6	0,00387	19
100L/4	1,50	1500	6,50	0,50	9,6	6,0	3,5	1,6	0,00498	23
112M/4	2,30	1500	9,80	0,50	14,5	7,0	4,0	1,6	0,01012	34

Änderungen vorbehalten

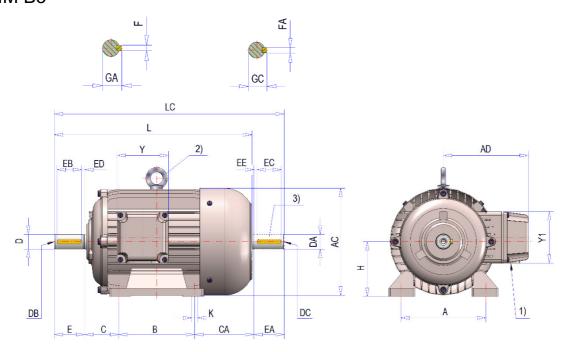
6-polig 400V-50Hz IC 411 Reluktanzmotor


Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	Strom	faktor	moment	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
						strom	moment	moment	moment	
RR	P_N	n _N	I_N	cos φ	M_N	I _A /I _N	M_A/M_N	M_K/M_N	J	М
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
71K/6	0,09	1000		auf Anfrage					0,00081	6
71L/6	0,12	1000		auf Anfrage					0,00101	7
80K/6	0,18	1000	1,30	0,45	1,7	4,3	4,2	1,6	0,00191	10
80L/6	0,25	1000	1,30	0,50	2,4	4,5	4,2	1,6	0,00239	11
90S/6	0,37	1000	2,40	0,42	3,5	4,8	4,0	1,6	0,00303	14,5
90L/6	0,55	1000	3,40	0,42	5,3	4,8	4,0	1,6	0,00416	16,5
100L/6	0,75	1000	4,20	0,40	7,2	5,2	4,0	1,7	0,00857	21,5
112M/6	1,10	1000	6,00	0,45	10,5	5,5	4,0	1,7	0,01580	31

Änderungen vorbehalten

Drehstrommotoren **Baureihe R** Maßblätter zu Baureihe R


Passungen und Toleranzen

Auszug der wichtigsten Passungen und Toleranzen

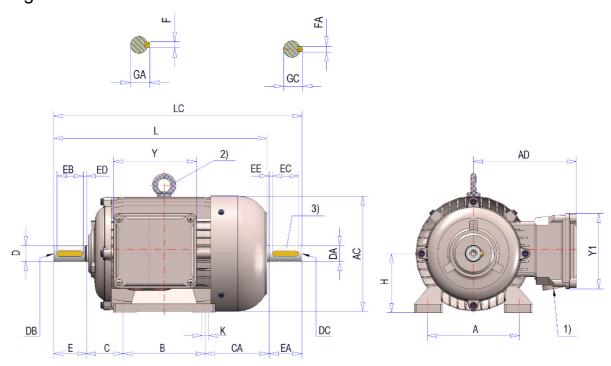
Maßbezeichnung	Bezeichnung nach DIN EN 50347	Passungen oder Toleranzen
N	Durchmesser der Flanschzentrierung	Ø 50 - 250 j6 Ø 250 - 300 h6
D	Durchmesser des Wellenendes auf der Antriebsseite	Ø 9-48 k6
DA	Durchmesser des Wellenendes auf der Nichtantriebsseite	Ø 9-48 k6
М	Lochkreisdurchmesser der Befestigungsbohrungen	Ø 90 – 120 +/- 0,3 Ø 140 – 350 +/- 0,5
Н	Abstand zwischen der Mittellinie der Welle und der Unterseite der Füße (Grundabmessung)	- 0,5
E	Länge des Wellenendes von der Schulter aus auf der Antriebsseite	- 0,5
EA	Länge des Wellenendes von der Schulter aus auf der Antriebsseite	- 0,5
S	Durchmesser der Befestigungsbohrungen des Flansches oder Nennweite des Gewindes	+/- 0,2
GA	Abstand zwischen Passfederoberseite und der gegenüberliegenden Oberfläche des antriebsseitigen Wellenendes	Ø 9 – 11 - 0,1 / -0,13 Ø 14 – 48 - 0,2 / -0,25
GC	Abstand zwischen Passfederoberseite und der gegenüberliegenden Oberfläche des nichtantriebsseitigen Wellenendes	Ø 9-11-0,1/-0,13 Ø 14-48-0,2/-0,25
F	Breite der Passfedernut bzw. der Passfeder des antriebseitigen Wellenendes	N9 bzw. h9
FA	Breite der Passfedernut bzw. der Passfeder des nichtantriebseitigen Wellenendes	N9 bzw. h9

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


Turn	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LC	CA
Тур						DA	EA	DC					GC	FA	EC	EE			
R 63 K/L	80	100	7	63	40	11	23	M4	123	99	70	70	12,5	4	18	2,5	211	239	73
R 71 K/L	90	112	7	71	45	14	30	M5	138	109	70	70	16	5	25	2,5	243	278	83
R 80 K/L	100	125	9,5	80	50	19	40	M6	156	127	85	85	21,5	6	32	4	274	319	89
R 90 S	100	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	301	356	100
R 90 L	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	326	381	100
R 90V	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	366	421	140
R 100 L	140	160	11,2	100	63	28	60	M10	194	149	85	85	31	8	50	5	366	431	108
R 100 V	140	160	11,2	100	63	28	60	M10	194	149	85	85	31	8	50	5	416	481	158
R 112 M	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	383	448	118
R 112 V	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	423	488	158
R 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449	534	145
R 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487	572	145
R 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	622	195
R 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	588	703	165
R 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	632	747	165
R 160 V	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	662	777	195
R 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	653	768	186
R 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	691	806	186

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (Abschnitt Bauformen).

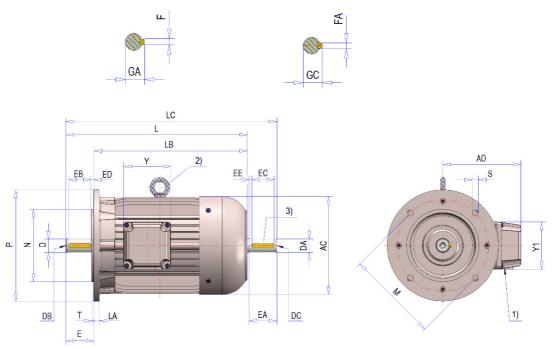
Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


T	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LC	CA
Тур						DA	EA	DC					GC	FA	EC	EE			
R 63 K/L	80	100	7	63	40	11	23	M4	123	121	117	103	12,5	4	18	2,5	211	239	73
R 71 K/L	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	243	278	83
R 80 K/L	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	274	319	89
R 90 S	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	301	356	100
R 90 L	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	326	381	100
R 90V	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	366	421	140
R 100 L	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	366	431	108
R 100 V	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	416	481	158
R 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	383	448	118
R 112 V	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	423	488	158
R 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449	534	145
R 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487	572	145
R 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	622	195
R 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	588	703	165
R 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	632	747	165
R 160 V	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	662	777	195
R 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	653	768	186
R 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	691	806	186

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (Abschnitt Bauformen)

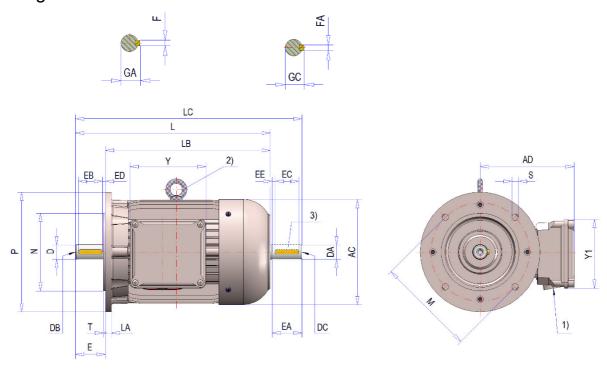
Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


Tim	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	M	N	Р	Т	LA
Тур	DA	EA	DC					GC	FA	EC	EE									
RF 63 K/L	11	23	M4	123	104	70	70	12,5	4	18	2,5	211	188	239	9	115	95	140	3	10
RF 71 K/L	14	30	M5	138	114	70	70	16	5	25	2,5	243	213	278	9	130	110	160	3,5	9,5
RF 80 K/L	19	40	M6	156	134	85	85	21,5	6	32	4	274	234	319	11	165	130	200	3,5	11
RF 90 S	24	50	M8	176	137	85	85	27	8	40	5	301	251	356	11	165	130	200	3,5	10,5
RF 90 L	24	50	M8	176	137	85	85	27	8	40	5	326	276	381	11	165	130	200	3,5	10,5
RF 90 V	24	50	M8	176	137	85	85	27	8	40	5	366	316	421	11	165	130	200	3,5	10,5
RF 100 L	28	60	M10	194	148	85	85	31	8	50	5	366	306	431	14	215	180	250	4	15,5
RF 100 V	28	60	M10	194	148	85	85	31	8	50	5	416	356	481	14	215	180	250	4	15,5
RF 112 M	28	60	M10	218	158	85	85	31	8	50	5	383	323	448	14	215	180	250	4	11
RF 112 V	28	60	M10	218	158	85	85	31	8	50	5	423	363	488	14	215	180	250	4	11
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	14	265	230	300	4	12
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	14	265	230	300	4	12
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	14	265	230	300	4	12
RF 160 M	42	110	M16	310	244	186	186	45	12	90	10	588	478	703	18	300	250	350	5	14
RF 160 L	42	110	M16	310	244	186	186	45	12	90	10	632	522	747	18	300	250	350	5	14
RF 160 V	42	110	M16	310	244	186	186	45	12	90	10	662	552	777	18	300	250	350	5	14
RF 180 M	48	110	M16	348	254	175	190	51,5	14	100	5	653	543	768	18	300	250	350	5	14
RF 180 L	48	110	M16	348	254	175	190	51,5	14	100	5	691	581	806	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

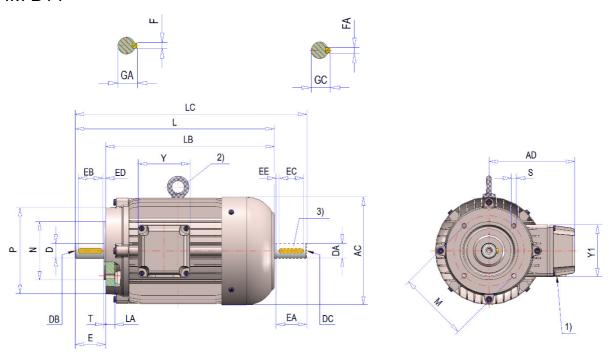
Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	М	N	Р	Т	LA
Тур	DA	EA	DC					GC	FA	EC	EE									
RF 63 K/L	11	23	M4	123	126	117	103	12,5	4	18	2,5	211	188	239	9	115	95	140	3	10
RF 71 K/L	14	30	M5	138	136	117	103	16	5	25	2,5	243	213	278	9	130	110	160	3,5	9,5
RF 80 K/L	19	40	M6	156	150	127	115	21,5	6	32	4	274	234	319	11	165	130	200	3,5	11
RF 90 S	24	50	M8	176	154	127	115	27	8	40	5	301	251	356	11	165	130	200	3,5	10,5
RF 90 L	24	50	M8	176	154	127	115	27	8	40	5	326	276	381	11	165	130	200	3,5	10,5
RF 90 V	24	50	M8	176	154	127	115	27	8	40	5	366	316	421	11	165	130	200	3,5	10,5
RF 100 L	28	60	M10	194	165	127	115	31	8	50	5	366	306	431	14	215	180	250	4	15,5
RF 100 V	28	60	M10	194	165	127	115	31	8	50	5	416	356	481	14	215	180	250	4	15,5
RF 112 M	28	60	M10	218	175	127	115	31	8	50	5	383	323	448	14	215	180	250	4	11
RF 112 V	28	60	M10	218	175	127	115	31	8	50	5	423	363	488	14	215	180	250	4	11
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	14	265	230	300	4	12
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	14	265	230	300	4	12
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	14	265	230	300	4	12
RF 160 M	42	110	M16	310	244	186	186	45	12	90	10	588	478	703	18	300	250	350	5	14
RF 160 L	42	110	M16	310	244	186	186	45	12	90	10	632	522	747	18	300	250	350	5	14
RF 160 V	42	110	M16	310	244	186	186	45	12	90	10	662	552	777	18	300	250	350	5	14
RF 180 M	48	110	M16	348	254	175	190	51,5	14	100	5	653	543	768	18	300	250	350	5	14
RF 180 L	48	110	M16	348	254	175	190	51,5	14	100	5	691	581	806	18	300	250	350	5	14

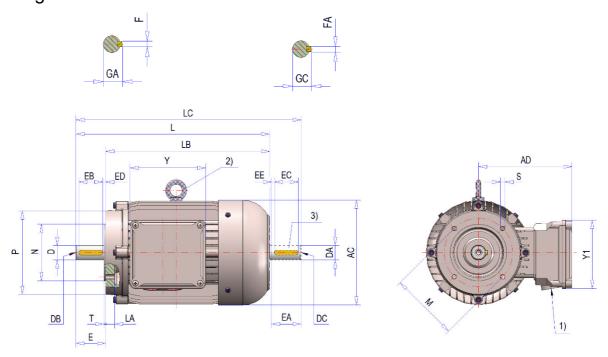
^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

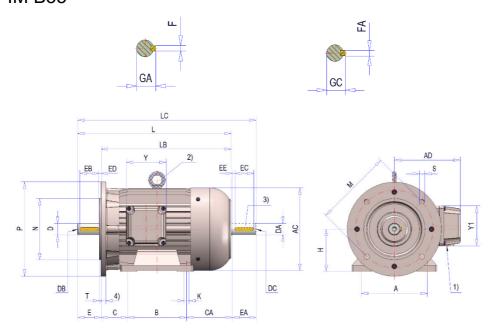
Turn	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	M	N	Р	Т	LA
Тур	DA	EA	DC					GC	FA	EC	EE									
RF 63 K/L	11	23	M4	123	104	70	70	12,5	4	18	2,5	211	188	239	M5	75	60	90	2,5	8
RF 71 K/L	14	30	M5	138	114	70	70	16	5	25	2,5	243	213	278	M6	85	70	105	2,5	10
RF 80 K/L	19	40	M6	156	134	85	85	21,5	6	32	4	274	234	319	M6	100	80	120	3	9,5
RF 90 S	24	50	M8	176	137	85	85	27	8	40	5	301	251	356	M8	115	95	140	3	15
RF 90 L	24	50	M8	176	137	85	85	27	8	40	5	326	276	381	M8	115	95	140	3	15
RF 90 V	24	50	M8	176	137	85	85	27	8	40	5	366	316	421	M8	115	95	140	3	15
RF 100 L	28	60	M10	194	148	85	85	31	8	50	5	366	306	431	M8	130	110	160	3,5	17
RF 100 V	28	60	M10	194	148	85	85	31	8	50	5	416	356	481	M8	130	110	160	3,5	17
RF 112 M	28	60	M10	218	158	85	85	31	8	50	5	383	323	448	M8	130	110	160	3,5	16
RF 112 V	28	60	M10	218	158	85	85	31	8	50	5	423	363	489	M8	130	110	160	3,5	16
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	M10	165	130	200	3,5	15
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	M10	165	130	200	3,5	15
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	M10	165	130	200	3,5	15
RF 160 M	42	110	M16	310	244	186	186	45	12	90	10	615	505	731	M12	215	180	250	4	14
RF 160 L	42	110	M16	310	244	186	186	45	12	90	10	659	549	775	M12	215	180	250	4	14
RF 160 V	42	110	M16	310	244	186	186	45	12	90	10	689	579	805	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

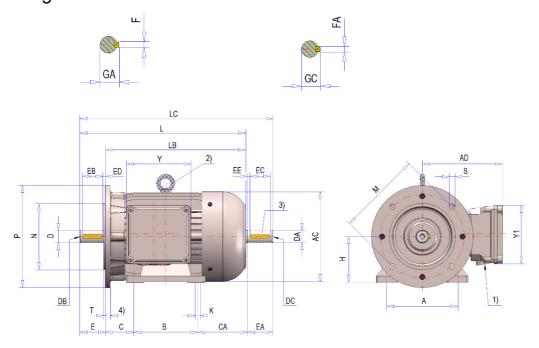
Tyn	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	М	N	Р	Т	LA
Тур	DA	EA	DC					GC	FA	EC	EE									
RF 63 K/L	11	23	M4	123	126	117	103	12,5	4	18	2,5	211	188	239	M5	75	60	90	2,5	8
RF 71 K/L	14	30	M5	138	136	117	103	16	5	25	2,5	243	213	278	M6	85	70	105	2,5	10
RF 80 K/L	19	40	M6	156	150	127	115	21,5	6	32	4	274	234	319	M6	100	80	120	3	9,5
RF 90 S	24	50	M8	176	154	127	115	27	8	40	5	301	251	356	M8	115	95	140	3	15
RF 90 L	24	50	M8	176	154	127	115	27	8	40	5	326	276	381	M8	115	95	140	3	15
RF 90 V	24	50	M8	176	154	127	115	27	8	40	5	366	316	421	M8	115	95	140	3	15
RF 100 L	28	60	M10	194	165	127	115	31	8	50	5	366	306	431	M8	130	110	160	3,5	17
RF 100 V	28	60	M10	194	165	127	115	31	8	50	5	416	356	481	M8	130	110	160	3,5	17
RF 112 M	28	60	M10	218	175	127	115	31	8	50	5	383	323	448	M8	130	110	160	3,5	16
RF 112 V	28	60	M10	218	175	127	115	31	8	50	5	423	363	489	M8	130	110	160	3,5	16
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	M10	165	130	200	3,5	15
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	M10	165	130	200	3,5	15
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	M10	165	130	200	3,5	15
RF 160 M	42	110	M16	310	244	186	186	45	12	90	10	615	505	731	M12	215	180	250	4	14
RF 160 L	42	110	M16	310	244	186	186	45	12	90	10	659	6549	775	M12	215	180	250	4	14
RF 160 V	42	110	M16	310	244	186	186	45	12	90	10	689	579	805	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B35

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)
- 4) Maße LA (siehe Maßblätter Baugröße: 63 180 / Kühlart: IC411 / Schutzart: IP 54 IP 55 / Bauform IM B5)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

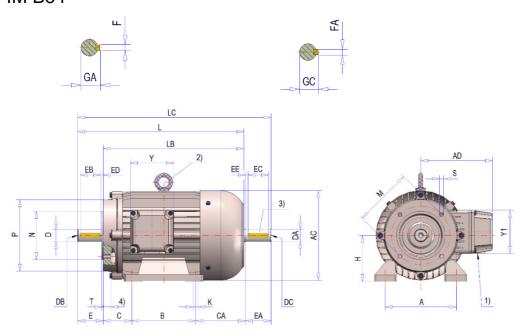
Tun	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	M	N	Р	Т	CA
Тур						DA	EA	DC					GC	FA	EC	EE									
R+F 63 K/L	80	100	7	63	40	11	23	M4	123	99	70	70	12,5	4	18	2,5	211	188	239	9	115	95	140	3	73
R+F 71 K/L	90	112	7	71	45	14	30	M5	138	109	70	70	16	5	25	2,5	243	213	278	9	130	110	160	3,5	83
R+F 80 K/L	100	125	9,5	80	50	19	40	M6	156	127	85	85	21,5	6	32	4	274	234	319	11	165	130	200	3,5	89
R+F 90 S	100	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	301	251	356	11	165	130	200	3,5	100
R+F 90 L	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	326	276	381	11	165	130	200	3,5	100
R+F 90 V	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	366	316	421	11	165	130	200	3,5	140
R+F 100 L	140	160	11,2	100	63	28	60	M10	194	149	85	85	31	8	50	5	366	306	431	14	215	180	250	4	108
R+F 100 V	140	160	11,2	100	63	28	60	M10	194	149	85	85	31	8	50	5	416	356	481	14	215	180	250	4	158
R+F 112 M	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	383	323	448	14	215	180	250	4	118
R+F 112 V	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	423	363	488	14	215	180	250	4	158
R+F 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	14	265	230	300	4	145
R+F 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	14	265	230	300	4	145
R+F 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	14	265	230	300	4	195
R+F 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	588	478	703	18	300	250	350	5	165
R+F 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	632	522	747	18	300	250	350	5	165
R+F 160 V	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	662	552	777	18	300	250	350	4	195
R+F 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	653	543	768	18	300	250	350	5	186
R+F 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	691	581	806	18	300	250	350	5	186

^{*} Bauform IM B35 / IM 2001, IM V15 / IM 2011, IM V35 / IM 2031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B35

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)
- 4) Maße LA (siehe Maßblätter Baugröße: 63 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B5)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

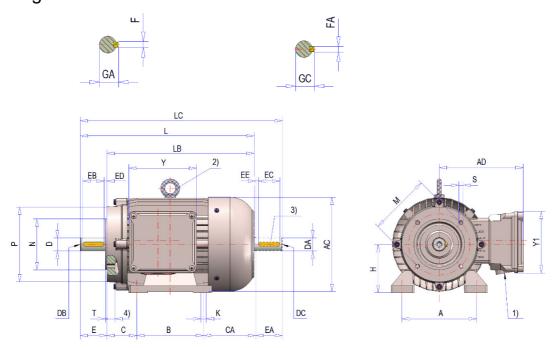
Turn	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	M	N	Р	Т	CA
Тур						DA	EA	DC					GC	FA	EC	EE									
R+F 63 K/L	80	100	7	63	40	11	23	M4	123	126	117	103	12,5	4	18	2,5	211	188	239	9	115	95	140	3	73
R+F 71 K/L	90	112	7	71	45	14	30	M5	138	136	117	103	16	5	25	2,5	243	213	278	9	130	110	160	3,5	83
R+F 80 K/L	100	125	9,5	80	50	19	40	M6	156	150	127	115	21,5	6	32	4	274	234	319	11	165	130	200	3,5	89
R+F 90 S	100	140	10	90	56	24	50	M8	176	154	127	115	27	8	40	5	301	251	356	11	165	130	200	3,5	100
R+F 90 L	125	140	10	90	56	24	50	M8	176	154	127	115	27	8	40	5	326	276	381	11	165	130	200	3,5	100
R+F 90 V	125	140	10	90	56	24	50	M8	176	154	127	115	27	8	40	5	366	316	421	11	165	130	200	3,5	140
R+F 100 L	140	160	11,2	100	63	28	60	M10	194	165	127	115	31	8	50	5	366	306	431	14	215	180	250	4	108
R+F 100 V	140	160	11,2	100	63	28	60	M10	194	165	127	115	31	8	50	5	416	356	481	14	215	180	250	4	158
R+F 112 M	140	190	11,2	112	70	28	60	M10	218	175	127	115	31	8	50	5	383	323	448	14	215	180	250	4	118
R+F 112 V	140	190	11,2	112	70	28	60	M10	218	175	127	115	31	8	50	5	423	363	488	14	215	180	250	4	158
R+F 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	14	265	230	300	4	145
R+F 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	14	265	230	300	4	145
R+F 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	14	265	230	300	4	195
R+F 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	588	478	703	18	300	250	350	5	165
R+F 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	632	522	747	18	300	250	350	5	165
R+F 160 V	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	662	552	777	18	300	250	350	4	195
R+F 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	653	543	768	18	300	250	350	5	186
R+F 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	691	581	806	18	300	250	350	5	186

^{*} Bauform IM B35 / IM 2001, IM V15 / IM 2011, IM V35 / IM2031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B34

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)
- 4) Maße LA (siehe Maßblätter Baugröße: 63 180 / Kühlart: IC411 / Schutzart: IP 54 IP 55 / Bauform IM B14)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

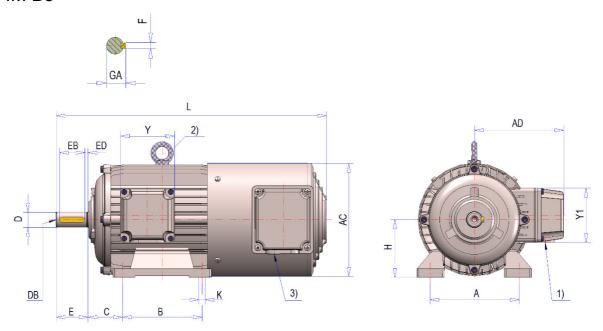
			Jonan								,														
Тур	В	Α	K	Н	С	D	Е	DB	AC	AD	Y	Y1	GA	F	EB	ED	L	LB	LC	S	M	N	Р	T	CA
тур						DA	EA	DC					GC	FA	EC	EE									
R+F 63 K/L	80	100	7	63	40	11	23	M4	123	99	70	70	12,5	4	18	2,5	211	188	239	M5	75	60	90	2,5	73
R+F 71 K/L	90	112	7	71	45	14	30	M5	138	109	70	70	16	5	25	2,5	243	213	278	M6	85	70	105	2,5	83
R+F 80 K/L	100	125	9,5	80	50	19	40	M6	156	127	85	85	21,5	6	32	4	274	234	319	M6	100	80	120	3	89
R+F 90 S	100	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	301	251	356	M8	115	95	140	3	100
R+F 90 L	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	326	276	381	M8	115	95	140	3	100
R+F 90 V	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	367	316	421	M8	115	95	140	3	140
R+F 100 L	140	160	11,2	100	63	28	60	M10	194	149	85	85	31	8	50	5	366	306	431	M8	130	110	160	3,5	108
R+F 100 V	140	160	11,2	100	63	28	60	M10	194	149	85	85	31	8	50	5	416	356	481	M8	130	110	160	3,5	158
R+F 112 M	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	383	323	448	M8	130	110	160	3,5	118
R+F 112 V	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	423	363	489	M8	130	110	160	3,5	158
R+F 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	M10	165	130	200	3,5	145
R+F 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	M10	165	130	200	3,5	145
R+F 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	M10	165	130	200	3,5	195
R+F 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	615	505	731	M12	215	180	250	4	165
R+F 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	659	549	775	M12	215	180	250	4	165
R+F 160 V	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	689	579	805	M12	215	180	250	4	196

^{*} Bauform IM B34 / IM 2101, IM V17 / IM 2111, IM V37 / IM 2131 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B34

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Norm dargestellt abweichende Abmessungen möglich)
- 4) Maße LA (siehe Abschnitt Baugröße: 63 180 / Kühlart: IC411 / Schutzart: ≥IP 56 / Bauform IM B14)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

Tun	В	Α	K	Н	С	D	Ε	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	LC	S	M	N	Р	Т	CA
Тур						DA	EA	DC					GC	FA	EC	EE									
R+F 63 K/L	80	100	7	63	40	11	23	M4	123	121	117	103	12,5	4	18	2,5	211	188	239	M5	75	60	90	2,5	73
R+F 71 K/L	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	243	213	278	M6	85	70	105	2,5	83
R+F 80 K/L	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	274	234	319	M6	100	80	120	3	89
R+F 90 S	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	301	251	356	M8	115	95	140	3	100
R+F 90 L	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	326	276	381	M8	115	95	140	3	100
R+F 90 V	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	366	316	421	M8	115	95	140	3	140
R+F 100 L	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	366	306	431	M8	130	110	160	3,5	108
R+F 100 V	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	416	356	481	M8	130	110	160	3,5	158
R+F 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	383	323	448	M8	130	110	160	3,5	118
R+F 112 V	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	423	363	489	M8	130	110	160	3,5	158
R+F 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449	369	534	M10	165	130	200	3,5	145
R+F 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487	407	572	M10	165	130	200	3,5	145
R+F 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	457	622	M10	165	130	200	3,5	195
R+F 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	615	505	731	M12	215	180	250	4	165
R+F 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	659	549	775	M12	215	180	250	4	165
R+F 160 V	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	689	579	805	M12	215	180	250	4	196

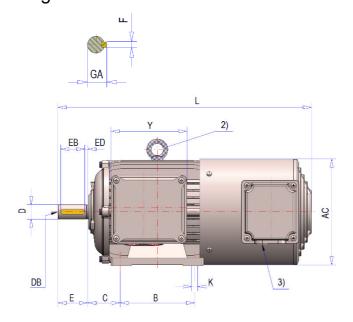
^{*} Bauform IM B34 / IM 2101, IM V17 / IM 2111, IM V37 / IM 2131 (Abschnitt Bauformen)

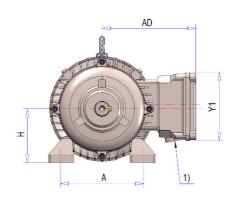
Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: IP 54 – IP 55 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R 63 K/L	80	100	7	63	40	11	23	M4	124	99	70	70	12,5	4	18	2,5	309
R 71 K/L	90	112	7	71	45	14	30	M5	139	109	70	70	16	5	25	2,5	337
R 80 K/L	100	125	9,5	80	50	19	40	M6	157	127	85	85	21,5	6	32	4	367
R 90 S	100	140	10	90	56	24	50	M8	177	140	85	85	27	8	40	5	402
R 90 L	125	140	10	90	56	24	50	M8	177	140	85	85	27	8	40	5	427
R 90 V	125	140	10	90	56	24	50	M8	177	140	85	85	27	8	40	5	467
R 100 L	140	160	11,2	100	63	28	60	M10	195	149	85	85	31	8	50	5	465
R 100 V	140	160	11,2	100	63	28	60	M10	195	149	85	85	31	8	50	5	515
R 112 M	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	483
R 112 V	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	523
R 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	578
R 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	616
R 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	666
R 160 M	210	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	737
R 160 L	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	781
R 160 V	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	811
R 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	800
R 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	838

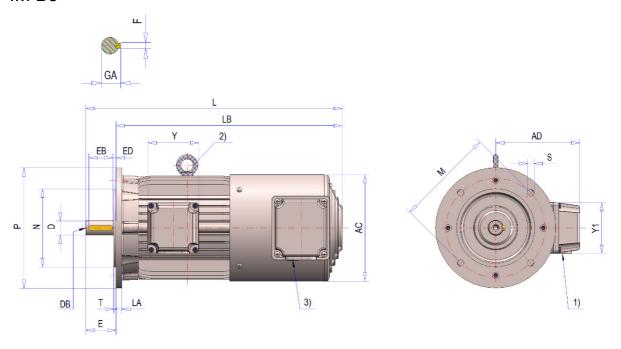

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (Abschnitt Bauformen)

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 56 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

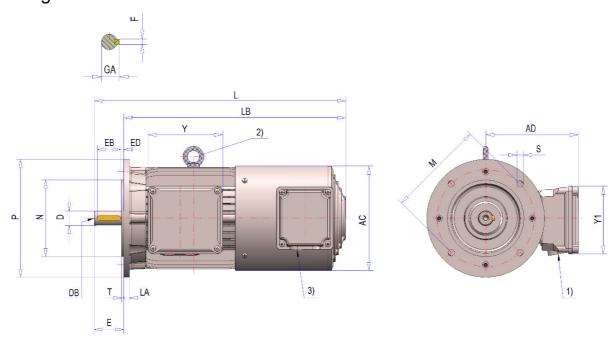
Тур	В	Α	K	Н	С	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R 63 K/L	80	100	7	63	40	11	23	M4	124	121	117	103	12,5	4	18	2,5	309
R 71 K/L	90	112	7	71	45	14	30	M5	139	130	117	103	16	5	25	2,5	337
R 80 K/L	100	125	9,5	80	50	19	40	M6	157	144	127	115	21,5	6	32	4	367
R 90 S	100	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	402
R 90 L	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	427
R 90 V	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	467
R 100 L	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	465
R 100 V	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	515
R 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	483
R 112 V	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	523
R 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	578
R 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	616
R 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	666
R 160 M	210	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	737
R 160 L	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	781
R 160 V	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	811
R 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	800
R 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	838

^{*}Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: IP 54 – IP 55 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

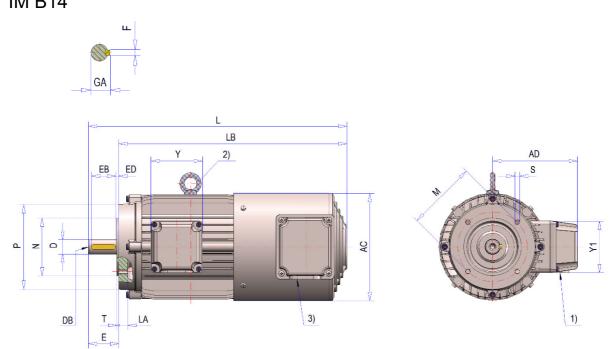
T	_		DD.	40	AD	V	V4	CA		-ED	ED		I D	•	NA.	NI.	n .	-	1.4
Тур	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA
RF 63 K/L	11	23	M4	124	104	70	70	12,5	4	18	2,5	309	286	9	115	95	140	3	10
RF 71 K/L	14	30	M5	139	114	70	70	16	5	25	2,5	337	307	9	130	110	160	3,5	9,5
RF 80 K/L	19	40	M6	157	134	85	85	21,5	6	32	4	367	327	11	165	130	200	3,5	11
RF 90 S	24	50	M8	177	137	85	85	27	8	40	5	402	352	11	165	130	200	3,5	10,5
RF 90 L	24	50	M8	177	137	85	85	27	8	40	5	427	377	11	165	130	200	3,5	10,5
RF 90 V	24	50	M8	177	137	85	85	27	8	40	5	467	417	11	165	130	200	3,5	10,5
RF 100 L	28	60	M10	195	148	85	85	31	8	50	5	465	405	14	215	180	250	4	15,5
RF 100 V	28	60	M10	195	148	85	85	31	8	50	5	515	455	14	215	180	250	4	15,5
RF 112 M	28	60	M10	218	158	85	85	31	8	50	5	483	423	14	215	180	250	4	11
RF 112 V	28	60	M10	218	158	85	85	31	8	50	5	523	463	14	215	180	250	4	11
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	14	265	230	300	4	12
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	14	265	230	300	4	12
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	666	586	14	265	230	300	4	12
RF 160 M	42	110	M16	311	244	186	186	45	12	90	10	737	627	18	300	250	350	5	14
RF 160 L	42	110	M16	311	244	186	186	45	12	90	10	781	671	18	300	250	350	5	14
RF 160 V	42	110	M16	311	244	186	186	45	12	90	10	811	701	18	300	250	350	5	14
RF 180 M	48	110	M16	348	254	175	190	51,5	14	100	5	800	690	18	300	250	350	5	14
RF 180 L	48	110	M16	348	254	175	190	51,5	14	100	5	838	728	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 56 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

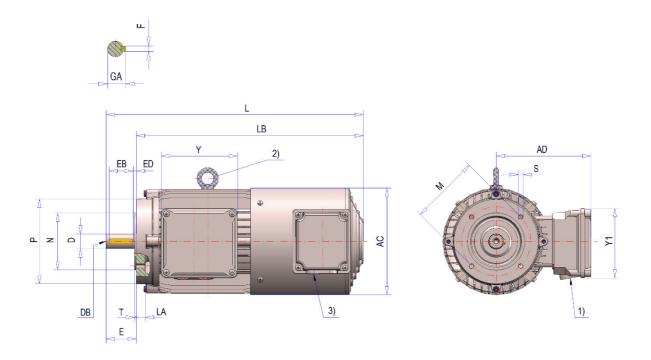
Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
RF 63 K/L	11	23	M4	124	126	117	103	12,5	4	18	2,5	309	286	9	115	95	140	3	10
RF 71 K/L	14	30	M5	139	136	117	103	16	5	25	2,5	337	307	9	130	110	160	3,5	9,5
RF 80 K/L	19	40	M6	157	150	127	115	21,5	6	32	4	367	327	11	165	130	200	3,5	11
RF 90 S	24	50	M8	177	154	127	115	27	8	40	5	402	352	11	165	130	200	3,5	10,5
RF 90 L	24	50	M8	177	154	127	115	27	8	40	5	427	377	11	165	130	200	3,5	10,5
RF 90 V	24	50	M8	177	154	127	115	27	8	40	5	467	417	11	165	130	200	3,5	10,5
RF 100 L	28	60	M10	195	165	127	115	31	8	50	5	465	405	14	215	180	250	4	15
RF 100 V	28	60	M10	195	165	127	115	31	8	50	5	515	455	14	215	180	250	4	15
RF 112 M	28	60	M10	218	175	127	115	31	8	50	5	483	423	14	215	180	250	4	11
RF 112 V	28	60	M10	218	175	127	115	31	8	50	5	523	463	14	215	180	250	4	11
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	14	265	230	300	4	12
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	14	265	230	300	4	12
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	666	586	14	265	230	300	4	12
RF 160 M	42	110	M16	311	244	186	186	45	12	90	10	737	627	18	300	250	350	5	14
RF 160 L	42	110	M16	311	244	186	186	45	12	90	10	781	671	18	300	250	350	5	14
RF 160 V	42	110	M16	311	244	186	186	45	12	90	10	811	701	18	300	250	350	5	14
RF 180 M	48	110	M16	348	254	175	190	51,5	14	100	5	800	690	18	300	250	350	5	14
RF 180 L	48	110	M16	348	254	175	190	51,5	14	100	5	838	728	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: IP 54 – IP 55 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

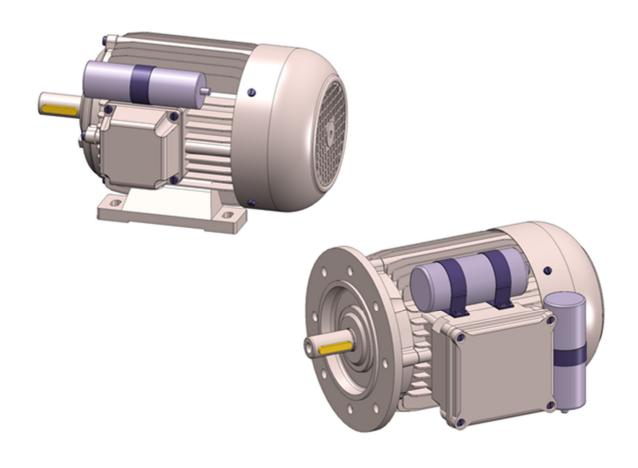

Änderungen vorbehalten

Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
RF 63 K/L	11	23	M4	124	104	70	70	12,5	4	18	2,5	309	286	M5	75	60	90	2,5	9,5
RF 71 K/L	14	30	M5	139	114	70	70	16	5	25	2,5	337	307	M6	85	70	105	2,5	10
RF 80 K/L	19	40	M6	157	134	85	85	21,5	6	32	4	367	327	M6	100	80	120	3	12,5
RF 90 S	24	50	M8	177	137	85	85	27	8	40	5	402	352	M8	115	95	140	3	15
RF 90 L	24	50	M8	177	137	85	85	27	8	40	5	427	377	M8	115	95	140	3	15
RF 90 V	24	50	M8	177	137	85	85	27	8	40	5	467	417	M8	115	95	140	3	15
RF 100 L	28	60	M10	195	148	85	85	31	8	50	5	465	405	M8	130	110	160	3,5	12,5
RF 100 V	28	60	M10	195	148	85	85	31	8	50	5	515	455	M8	130	110	160	3,5	12,5
RF 112 M	28	60	M10	218	158	85	85	31	8	50	5	483	423	M8	130	110	160	3,5	16
RF 112 V	28	60	M10	218	158	85	85	31	8	50	5	533	473	M8	130	110	160	3,5	16
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	M10	165	130	200	3,5	15
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	M10	165	130	200	3,5	15
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	690	610	M10	165	130	200	3,5	15
RF 160 M	42	110	M16	311	244	186	186	45	12	90	10	764	654	M12	215	180	250	4	14
RF 160 L	42	110	M16	311	244	186	186	45	12	90	10	808	698	M12	215	180	250	4	14
RF 160 V	42	110	M16	311	244	186	186	45	12	90	10	838	728	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 56 / Bauform IM B14

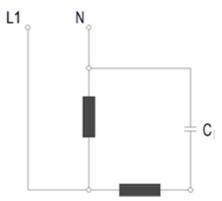
- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5


Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten

Тур	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
RF 63 K/L	11	23	M4	124	126	117	103	12,5	4	18	2,5	309	286	M5	75	60	90	2,5	9,5
RF 71 K/L	14	30	M5	139	136	117	103	16	5	25	2,5	337	307	M6	85	70	105	2,5	10
RF 80 K/L	19	40	M6	157	150	127	115	21,5	6	32	4	367	327	M6	100	80	120	3	12,5
RF 90 S	24	50	M8	177	154	127	115	27	8	40	5	402	352	M8	115	95	140	3	15
RF 90 L	24	50	M8	177	154	127	115	27	8	40	5	427	377	M8	115	95	140	3	15
RF 90 V	24	50	M8	177	154	127	115	27	8	40	5	467	417	M8	115	95	140	3	15
RF 100 L	28	60	M10	195	165	127	115	31	8	50	5	465	405	M8	130	110	160	3,5	12,5
RF 100 V	28	60	M10	195	165	127	115	31	8	50	5	515	455	M8	130	110	160	3,5	12,5
RF 112 M	28	60	M10	218	175	127	115	31	8	50	5	483	423	M8	130	110	160	3,5	16
RF 112 V	28	60	M10	218	175	127	115	31	8	50	5	533	473	M8	130	110	160	3,5	16
RF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	M10	165	130	200	3,5	15
RF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	M10	165	130	200	3,5	15
RF 132 V	38	80	M12	258	197	145	130	41	10	70	5	690	610	M10	165	130	200	3,5	15
RF 160 M	42	110	M16	311	244	186	186	45	12	90	10	764	654	M12	215	180	250	4	14
RF 160 L	42	110	M16	311	244	186	186	45	12	90	10	808	698	M12	215	180	250	4	14
RF 160 V	42	110	M16	311	244	186	186	45	12	90	10	838	728	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)



Einphasenmotoren

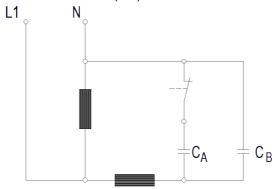
Einphasenmotoren können am einphasigen 230 V - Netz betrieben werden. In Abhängigkeit von dem benötigten Anlaufmoment kann zwischen den Ausführungen mit Betriebskondensator oder mit Anlaufund Betriebskondensator gewählt werden:

Einphasenmotoren mit Betriebskondensatoren, Typ REBK

Diese Motoren haben bei übereinstimmender Baugröße und Polzahl die gleiche Leistung wie Drehstrommotoren, aber ein relativ geringes Anzugsmoment (siehe technische Daten Einphasenmotoren mit Betriebskondensator). Sie sind deshalb besonders für Antriebe geeignet, bei denen ein geringes Anzugsmoment benötigt wird bzw. unbelasteter Anlauf erfolgt. Der Kondensator bleibt durchgängig eingeschaltet. Die Motoren sind nicht für langen Leerlaufbetrieb einsetzbar, da die zulässigen Grenztemperaturen nicht überschritten werden können.

Spannung und Frequenz

Die Motoren sind für 230 Volt, 50 Hz ausgelegt. Andere Spannungen und Frequenzen auf Anfrage.


Drehsinn

Die Drehrichtung ist bei Blick auf das antriebsseitige Wellenende im Uhrzeigersinn, d.h. Rechtslauf. Der Drehrichtungswechsel kann durch Umlegen der Brücken am Klemmenbrett entsprechend den Anschlußschaltbildern vorgenommen werden.

Einphasenmotoren mit Anlauf- und Betriebskondensatoren, Typ REBK ... AR / FKS

Diese Ausführung vereint die hohe Leistung des REBK-Typs mit einem hohen Anzugsmoment (siehe technische Daten Einphasenmotoren mit Anlauf- und Betriebskondensator). Der Anlaufkondensator wird nach erfolgtem Hochlauf mittels Anlaufrelais (AR) oder Fliehkraftschalter (FKS) abgeschaltet.

Kondensatoren

Betriebs- und Anlaufkondensatoren sind standardmäßig am Motor angebaut. Die Kondensatoren können auch getrennt geliefert werden.

Abweichende Motor-Nenndaten können Änderungen der Kondensatorgrößen zur Folge haben.

Sonderausführungen auf Anfrage

Einphasenmotoren mit Betriebskondensator

2-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Konden-	Konden-	Massen-	Gewicht
	leistung	drehzahl	strom bei 230V	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	sator	sator	trägheits- moment	IM B3
	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	C _B 1)	C _A 1)	J	М
	kW	min ⁻¹	Α		Nm	Nm		μF	μF	kgm²	ca. kg
REBK 71K/2	0,37	2830	2,90	0,99	1,3	3,0	0,40	12	-	0,00034	6,5
REBK 71L/2	0,55	2850	3,80	0,95	1,9	3,0	0,60	16	-	0,00042	7,5
REBK 80K/2	0,75	2860	5,20	0,99	2,5	3,2	0,40	25	-	0,00064	9,5
REBK 80L/2	1,10	2870	7,00	0,95	3,7	3,2	0,50	30	-	0,00079	10,5
REBK 90S/2	1,50	2870	10,5	0,95	5,0	3,7	0,50	40	-	0,00124	14,5
REBK 90L/2	2,20	2870	14,1	0,99	7,35	3,0	0,45	70	-	0,00155	17,5

¹⁾ Kondensatorenspannung: Betrieb 400V

Änderungen vorbehalten

4-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min-1

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Konden-	Konden-	Massen-	Gewicht
	leistung	drehzahl	Strom bei 230V	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	sator	sator	trägheits- moment	IM B3
	P_{N}	n_N	I _N	cos φ	M_N	I _A /I _N	M_A/M_N	C _B 1)	C _A 1)	J	М
	kW	min ⁻¹	Α		Nm	Nm		μF	μF	kgm²	ca. kg
REBK 71K/4	0,25	1390	2,2	0,99	1,7	2,5	0,40	10	-	0,00052	6,5
REBK 71L/4	0,37	1400	3,0	0,97	2,5	2,5	0,40	12	-	0,00064	7,5
REBK 80K/4	0,55	1410	4,50	0,97	3,7	3,0	0,50	20	-	0,00099	8,5
REBK 80L/4	0,75	1410	5,50	0,96	5,1	3,0	0,45	25	-	0,00126	11,0
REBK 90S/4	1,10	1410	7,50	0,98	7,5	3,2	0,50	30	-	0,00205	14,5
REBK 90L/4	1,50	1420	9,50	0,96	10,0	3,3	0,50	40	-	0,00243	16,0

¹⁾ Kondensatorenspannung: Betrieb 400V

Änderungen vorbehalten

Einphasenmotoren mit Anlauf- und Betriebskondensator

2-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Konden-	Konden-	Massen-	Gewicht
	leistung	drehzahl	strom bei 230V	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	sator	sator	trägheits- moment	IM B3
	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	C _B 1)	C _A 1)	J	М
	kW	min ⁻¹	Α		Nm	Nm		μF	μF	kgm²	ca. kg
REBK 71K/2 AR	0,37	2830	2,90	0,99	1,3	4,0	1,6	12	40	0,00034	7,5
REBK 71L/2 AR	0,55	2850	3,80	0,95	1,9	4,3	1,7	16	50	0,00042	8,5
REBK 80K/2 AR	0,75	2860	5,20	0,99	2,5	4,3	1,8	25	70	0,00064	10,5
REBK 80L/2 AR	1,10	2870	7,00	0,95	3,7	4,6	1,8	30	100	0,00079	11,5
REBK 90S/2 AR	1,50	2870	10,5	0,95	5,0	4,0	1,8	40	100	0,00124	15,5
REBK 90L/2 AR	2,20	2870	14,0	0,97	7,5	4,5	1,8	50	200	0,00155	18,5

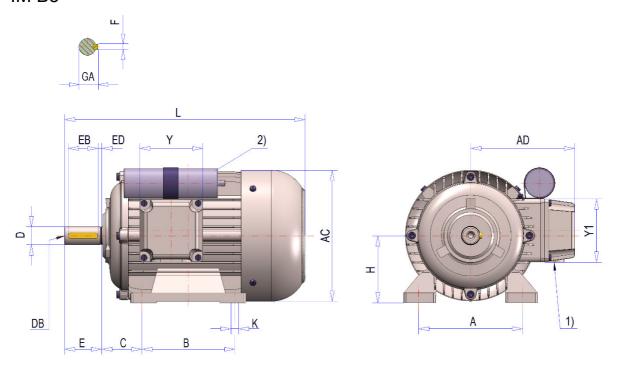
¹⁾ Kondensatorenspannung: Anlauf 320V, Betrieb 400V

Änderungen vorbehalten

4-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Konden-	Konden-	Massen-	Gewicht
	leistung	drehzahl	Strom bei 230V	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	sator	sator	trägheits- moment	IM B3
	P _N	n _N	I _N	cos φ	M _N	I _A /I _N	M_A/M_N	C _B 1)	C _A 1)	J	М
	kW	min ⁻¹	Α		Nm	Nm		μF	μF	kgm²	ca. kg
REBK 71K/4AR	0,25	1390	2,20	0,99	1,7	3,5	1,7	10	20	0,00052	7,5
REBK 71L/4AR	0,37	1400	3,00	0,93	2,5	3,3	1,8	12	30	0,00064	8,5
REBK 80K/4AR	0,55	1410	4,50	0,97	3,7	3,5	1,7	20	50	0,00099	9,5
REBK 80L/4AR	0,75	1410	5,50	0,92	5,1	3,5	1,8	25	70	0,00126	12,0
REBK 90S/4AR	1,10	1410	7,50	0,98	7,5	4,0	1,8	30	70	0,00205	15,5
REBK 90L/4AR	1,50	1420	9,50	0,94	10,0	4,0	1,7	40	100	0,00243	17,0


¹⁾ Kondensatorenspannung: Anlauf 320V, Betrieb 400V

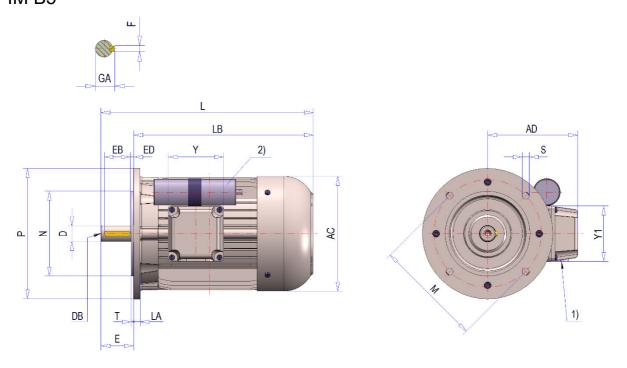
Änderungen vorbehalten

Maßblätter zu Einphasenmotoren mit Betriebskondensator

Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3

- 1) Siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) Kondensatorgröße nach Wicklungsauslegung

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

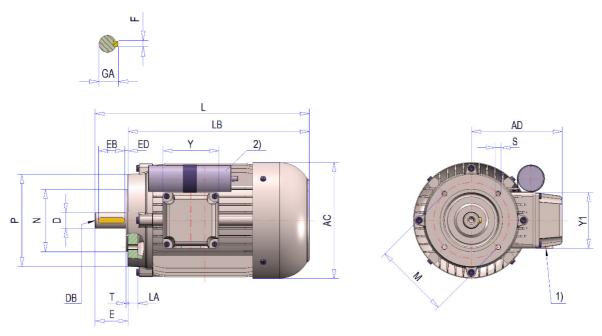

Änderungen vorbehalten

Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
REBK 71 K/L	90	112	7	71	45	14	30	M5	138	109	70	70	16	5	25	2,5	243
REBK 80 K/L	100	125	9,5	80	50	19	40	M6	156	127	85	85	21,5	6	32	4	274
REBK 90 S	100	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	301
REBK 90 L	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	326

* Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061; IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5

- 1) Siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) Kondensatorgröße nach Wicklungsauslegung Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten


Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
REBKF 71 K/L	14	30	M5	138	114	70	70	16	5	25	2,5	243	213	9	130	110	160	3,5	9,5
REBKF 80 K/L	19	40	M6	156	134	85	85	21,5	6	32	4	274	234	11	165	130	200	3,5	11
REBKF 90 S	24	50	M8	176	137	85	85	27	8	40	5	301	251	11	165	130	200	3,5	10,5
REBKF 90 L	24	50	M8	176	137	85	85	27	8	40	5	326	276	11	165	130	200	3,5	10,5

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

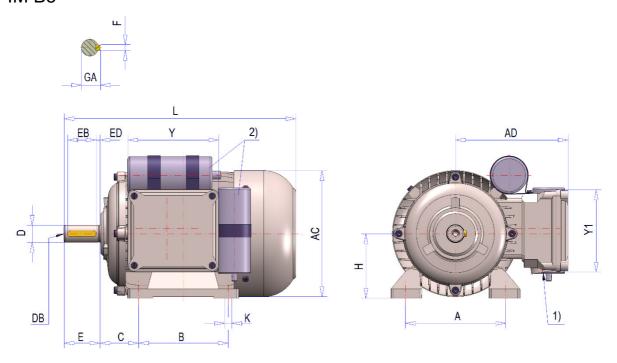
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform

IM B14

- 1) Siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) Kondensatorgröße nach Wicklungsauslegung

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


Тур	D	Ε	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA
REBKF 71 K/L	14	30	M5	138	114	70	70	16	5	25	2,5	243	213	M6	85	70	105	2,5	10
REBKF 80 K/L	19	40	M6	156	134	85	85	21,5	6	32	4	274	234	M6	100	80	120	3	9,5
REBKF 90 S	24	50	M8	176	137	85	85	27	8	40	5	301	251	M8	115	95	140	3	15
REBKF 90 L	24	50	M8	176	137	85	85	27	8	40	5	326	276	M8	115	95	140	3	15

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

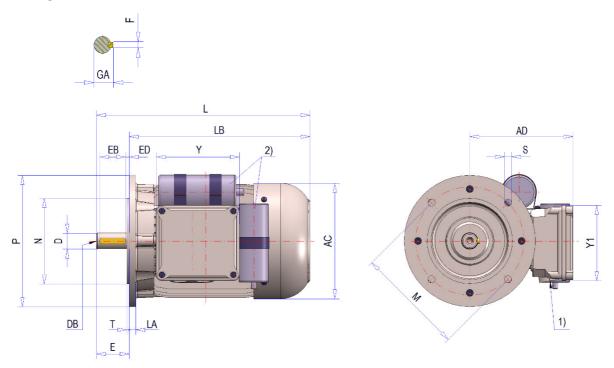
Maßblätter zu Einphasenmotoren mit Anlauf- und Betriebskondensator

Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B3

- 1) Siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) Kondensatorgröße nach Wicklungsauslegung

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	٦
REBK 71 K/L	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	243
REBK 80 K/L	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	274
REBK 90 S	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	301
REBK 90 L	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	326

* Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061; IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

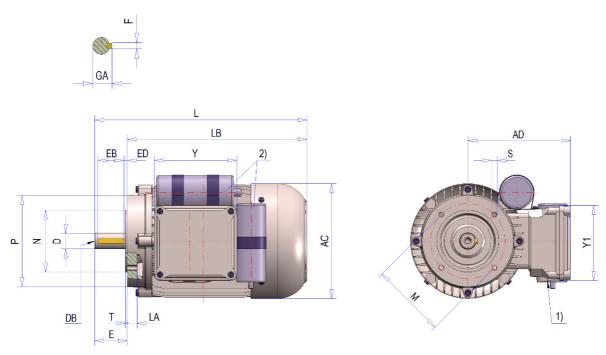
Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform

IM_{B5}

- 1) Siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) Kondensatorgröße nach Wicklungsauslegung

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

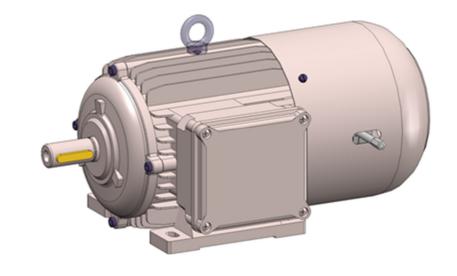
Änderungen vorbehalten

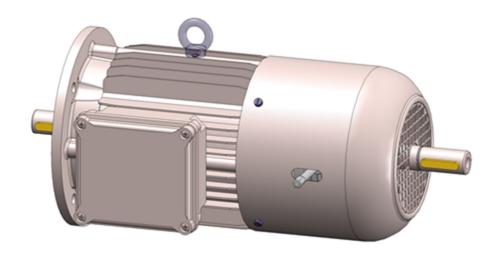

Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA
REBKF 71 K/L	14	30	M5	138	136	117	103	16	5	25	2,5	243	213	9	130	110	160	3,5	9,5
REBKF 80 K/L	19	40	M6	156	150	127	115	21,5	6	32	4	274	234	11	165	130	200	3,5	11
REBKF 90 S	24	50	M8	176	154	127	115	27	8	40	5	301	251	11	165	130	200	3,5	10,5
REBKF 90 L	24	50	M8	176	154	127	115	27	8	40	5	326	276	11	165	130	200	3,5	10,5

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 71 – 90 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform

IM B14




- 1) Siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) Kondensatorgröße nach Wicklungsauslegung Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
REBKF 71 K/L	14	30	M5	138	136	117	103	16	5	25	2,5	243	213	M6	85	70	105	2,5	10
REBKF 80 K/L	19	40	M6	156	150	127	115	21,5	6	32	4	274	234	M6	100	80	120	3	9,5
REBKF 90 S	24	50	M8	176	154	127	115	27	8	40	5	301	251	M8	115	95	140	3	15
REBKF 90 L	24	50	M8	176	154	127	115	27	8	40	5	326	276	M8	115	95	140	3	15

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Bremsmotoren

Bremsmotoren sind Drehstrom- oder Einphasenasynchronmotoren mit Käfigläufer, die mit einer mechanischen Bremse ausgerüstet sind. Die Wicklung des Motors wird durch den Bremsvorgang thermisch nicht belastet.

Bremsmotoren werden dort eingesetzt, wo bewegte Massen in kurzer Zeit zu verzögern sind oder wo Massen definiert gehalten werden müssen. Zum Beispiel in Hub- und Fahrantriebe, Werkzeugmaschinen, Verpackungsmaschinen, Transport- und Fördertechnik, Verstellantriebe und vieles mehr.

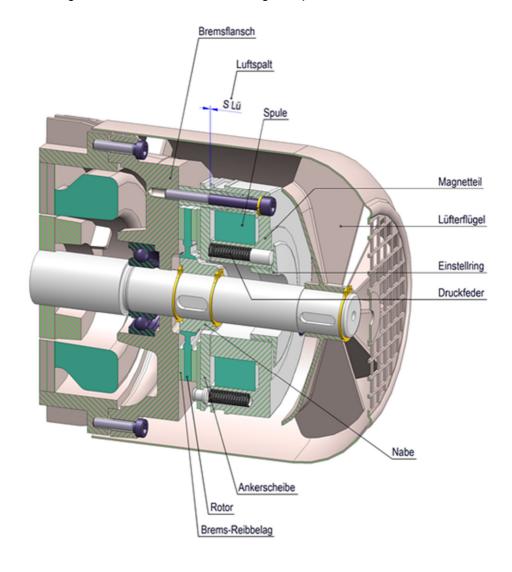
Die Bremsmotoren zeichnen sich aus durch:

- Verkürzung der Nebenzeiten durch kurze Motorauslaufzeiten
- Haltebremse bei Stromausfall
- genaues Einfahren in eine bestimmte Position
- Erhöhung der Schalthäufigkeit des Motors
- Anpassung des Bremsmoments an die Arbeitsbedingungen
- hohe Betriebssicherheit aufgrund einer robusten Konstruktion
- hohe Lebensdauer

Die Bremsmotoren sind mit folgenden Bremsen lieferbar:

- Elektromagnetisch gelüftete Federkraftbremsen Typ B
- Elektromagnetisch betätigte Bremsen Typ EB

Die Bremsen entsprechen der DIN VDE 0580. Sie sind ausschließlich für den Trockenlauf konstruiert.


Elektromagnetisch gelüftete Federkraftbremse Typ B

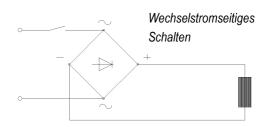
Diese Bremse ist eine Einscheibenbremse mit zwei Reibflächen. Durch mehrere Druckfedern wird im stromlosen Zustand das Bremsmoment durch Reibschluss erzeugt. Das Lösen der Bremse erfolgt elektromagnetisch.

Erzeugung des Bremsmomentes

Beim Bremsvorgang wird der auf der Nabe oder Welle axial verschiebbare Rotor durch die Druckfedern über die Ankerscheibe an die Gegenreibfläche gedrückt. Im gebremsten Zustand ist zwischen Ankerscheibe und Magnetteil der Luftspalt S_{Lü} vorhanden.

Zum Lüften der Bremse wird die Spule des Magnetteils mit Gleichspannung erregt. Die entstehende Magnetkraft zieht die Ankerscheibe gegen die Federkraft an das Magnetteil. Der Rotor ist damit von der Federkraft entlastet und kann sich frei drehen. Bei der Standard Bremse Typ B besteht die Möglichkeit, über den Einstellring das Bremsmoment kundenseitig anzupassen.

Spannung und Schaltungsart


Neben den Standardspannungen 24 V, 103 V, 180 V, und 205 V [DC] können die Bremsen auch für andere Spannungen geliefert werden. Die zulässige Spannungsänderung beträgt nach DIN VDE 0580 ± 10 % der Bemessungsspannung.

Zum Anschluss der Bremsen an eine Wechselspannungsversorgung wird ein Gleichrichter verwendet. Diese Gleichrichter wurden speziell für die Speisung von Gleichstrom-Magnetspulen entwickelt und sind gegen Spannungsspitzen, die bei Schaltvorgängen, Prellerscheinungen, überlangen Zuleitungen oder schlechten Netzverhältnissen eintreten, durch eine Varistorschutzbeschaltung geschützt. Die Bremsmotoren können mit Einweg- oder Brückengleichrichtern versehen werden, die im Klemmenkasten untergebracht sind.

Die Bremsmotoren können in zwei Grundschaltungsarten geschaltet werden:


Wechselstromseitiges Schalten

Serienmäßig werden Gleichrichter wechselstromseitig an die Motorklemmen und gleichstromseitig an die Bremsspule angeschlossen. Es ergibt sich ein weiches, verzögertes Einfallen der Bremse.

Gleichstromseitiges Schalten

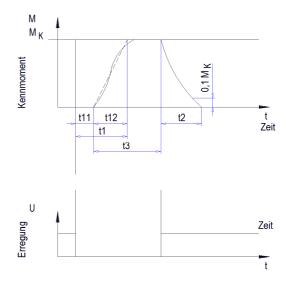
Der Gleichrichter wird wechselstromseitig am Motorklemmenbrett angeschlossen. Beim Abschalten wird der Gleichstromkreis zwischen Gleichrichter und Bremsspule über einen Hilfskontakt des Motorschutzschalters unterbrochen. Das Magnetfeld der Bremse baut sich sehr schnell ab, so dass das Bremsmoment schneller zur Verfügung steht.

Schaltzeiten

Der Übergang vom bremsmomentfreien Zustand bis zum Beharrungs-Bremsmoment ist nicht verzugsfrei. In Abhängigkeit von den genannten Schaltungsarten ergeben sich unterschiedliche Schaltzeiten der Bremse. Dabei ist für das Einfallen der Bremse die Verknüpfzeit und für das Lüften die Trennzeit maßgebend. Beim gleichstromseitigen Schalten wird eine erhebliche Verkürzung der Verknüpfzeit t1 erreicht. Die Trennzeit t2 kann durch den Einsatz von Geräten verringert werden, die mit Schnell- oder Übererregung arbeiten.

Die in der Tabelle (Technische Daten (für Standard-Bremse Typ B)) angegebenen Schaltzeiten gelten für gleichstromseitiges Schalten bei Nennlüftweg S_{Lü} und warmer Bremsspule. Bei wechselstromseitigem Schalten verlängern sich die Verknüpfzeiten ca. um Faktor 10.

Die Schaltzeiten werden von verschiedenen Faktoren beeinflusst, wie z.B. der Temperatur, dem Lüftweg zwischen Anker und Spulenträger (je nach Abnutzungszustand der Bremse), vom ggf. verringerten Bremsmoment, von der Gleichrichtungsart, usw.


 t_{11} = Ansprechverzug beim Verknüpfen

 t_{12} = Anstiegszeit des Bremsmoments

 t_1 = Verknüpfzeit

 t_2 = Trennzeit

 t_3 = Rutschzeit

Technische Daten (für Standard-Bremse Typ B)

Тур	Brems- moment *	Nenn- eingangs- leistung	max. Drehzahl	Lüftweg	zulässiger Lüftweg	Schaltzeiter gleichstrom seitiges Scl	-	Trägheits- moment	Gewicht Magnetteil
	M _K	[P 20°C]	n _{max.}	S _{Lü}	S _{Lü max.}	t ₁	t ₂	J	
	[Nm]	[W]	[min ⁻¹]	[mm]	[mm]	[ms]	[ms]	[kgm² · 10 ⁻⁴]	[kg]
B4	4	20	6000	0,2	0,5	28	45	0,15	0,75
B8	8	25	5000	0,2	0,5	31	57	0,61	1,2
B16	16	30	4000	0,2	0,5	47	76	2,0	2,1
B32	32	40	3600	0,3	0,75	53	115	4,5	3,5
B60	60	50	3600	0,3	0,75	42	210	6,3	5,2
B80	80	55	3600	0,3	0,75	57	220	15	7,9
B150	150	85	3600	0,4	1,0	78	270	29	12,0
B260	260	100	3600	0,4	1,0	165	340	73	19,3
B400	400	110	3000	0,5	1,25	230	390	200	29,1

^{*} Das real zur Verfügung stehende Bremsmoment verringert sich umgekehrt proportional in Abhängigkeit der Drehzahl.

Änderungen vorbehalten

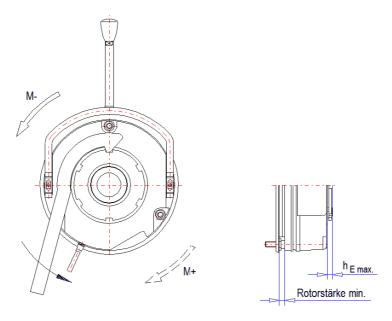
Bremsmotoren-Leistungsdaten

Bremsengröße und Motorbaugröße sind einander in der Regel so zugeordnet, dass die mit dem Bremsmotor zu erzielende Schalthäufigkeit nicht durch die Bremse, sondern durch die Motorerwärmung begrenzt ist. Die zulässige Schalthäufigkeit, die mittels Trägheitsfaktor, Gegenmomentfaktor und Lastfaktor errechnet wird, kann in den meisten Fällen auch für die Federkraftbremse als zulässige Bremsschalthäufigkeit angenommen werden. Diese muss größer sein als die verlangte Anzahl von Anläufen oder Bremsvorgängen pro Stunde.

Bremse Typ B	B4	В8	B16	B32	B60	B80	B150	B260	B400
Bremsmoment	4	8	16	32	60	80	150	260	400
[Nm]	-		10	02	00	00	130	200	100
Baugröße 63	х								
Baugröße 71	х	0							
Baugröße 80	0	x	0						
Baugröße 90	0	0	x	0					
Baugröße 100		0	0	x	0				
Baugröße 112			0	0	x	0			
Baugröße 132			0	0	0	x	0		
Baugröße 160					0	0	х	0	
Baugröße 180							0	х	0

x = normale Zuordnung

o = mögliche Zuordnung



Bremsmomentenreduzierung

Bei der Standard-Bremse Typ B kann das Bremsmoment M_K über den im Magnetteil befindlichen Einstellring reduziert werden (mit Hakenschlüssel nach DIN 1810 Form A). Pro Rastung im Einstellring ändert sich das Bremsmoment gemäß Tabelle. Der Einstellring darf nur bis zum maximalen Maß h_{Emax} gemäß untenstehender Tabelle herausgeschraubt werden. Es ist zu beachten, dass sich die Verknüpfund Trennzeiten ändern. Die Momentenreduzierung ist unabhängig von dem eingesetzten Kennmoment.

	4	8	16	32	60	80	150	260	400
				[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]
Momentenreduzierung pro Rastung [Nm]	0,2	0,35	0,8	1,3	1,7	1,6	3,6	5,6	6,2
Überstand Einstellring h _{Emax} [mm]	4,5	4,5	7,5	9,5	11	10	15	17	19,5
Rotorstärke min. [mm]	4,5	5,5	7,5	8,0	7,5	8,0	10	12	15,5

Tabelle gilt nur für Bremse Typ B mit Einstellring Änderungen vorbehalten

Schutzart

Die Schutzart des Magnetteils der Bremse ist IP 66. Wenn die Federkraftbremse unter der Lüfterhaube des Motors montiert ist, ist die Schutzart in Abhängigkeit von den konstruktiv getroffenen Maßnahmen mindestens IP 55.

Höhere Schutzarten durch Einsatz anderer Bremsen Typen auf Anfrage möglich.

Die Umgebungstemperatur ist -20° C bis +40° C. Bei hoher Luftfeuchtigkeit und tiefer Temperatur sind noch Maßnahmen gegen das Festfrieren von Ankerscheibe und Rotor zu treffen.

Die Bremsen sind als nahezu wartungsfrei zu bezeichnen. Es empfiehlt sich, den Lüftweg $S_{L\ddot{u}}$ in bestimmten Zeitabständen zu kontrollieren. Der Verschleiß ist abhängig von der pro Bremsvorgang zu verrichtenden Reibarbeit. Ist der maximale Lüftweg $S_{L\ddot{u}max}$ (siehe Technische Daten (für Standard-Bremse Typ B)) erreicht, ist die Bremse wiederum auf den $S_{L\ddot{u}}$ einzustellen. Die Bremse kann mindestens 5-mal nachgestellt werden, jedoch nur so häufig, dass die min. Rotorstärke nicht unterschritten wird.

Steuerung von Antrieben für hohe Schalthäufigkeit

Die Steuerung des Antriebes ist so vorzunehmen, dass der Motor nicht gegen die geschlossene Bremse anläuft.

Besonders bei großen Bremsmotoren sind die Ansprechzeiten von Motor und Bremse sehr unterschiedlich. Das Anfahren gegen die geschlossene Bremse führt bei hoher Schalthäufigkeit zum frühzeitigen Verschleiß des Bremsbelages und kann durch den sich laufend wiederholenden hohen Anlaufstrom zur Wicklungserwärmung und zum Ausfall des Motors führen.

Durch folgende Möglichkeiten können die Ansprechzeiten von Motor und Bremse angeglichen werden:

- Die Steuerspannung des Motors kann über einen in der Bremse angebauten Mikroschalter geführt werden. Sobald die Bremse geöffnet ist, wird der Motor eingeschaltet.
- Die Ansprechzeiten des Motors und der Bremse können durch ein Zeitrelais ausgeglichen werden. (Einstellbereich des Zeitrelais 0,05 bis 1s).
- Es kann eine Schnellschaltung mittels Schnellschaltgleichrichter erfolgen, wobei während des Einschaltvorganges die Bremsspule mit einer höheren Spannung angesteuert wird. Nach erfolgter Lüftung wird dann die Spannung auf Nennspannung reduziert.

- Bremsmotoren mit Schnellerregung für hohe Schalthäufigkeiten
- Bremsen mit Handlüftung (TÜV abgenommen)
 Wahlweise kann die Bremse auch mit Handlüftung geliefert werden. Durch den Zug am Handlüftungshebel im stromlosen Zustand wird die Bremse mechanisch gelüftet und die Welle lässt sich leicht drehen. Der Handlüftungshebel liegt im Bereich der Lüfterhaube.
 Handlüftungshebel feststellbar auf Anfrage.
- Bremsen für Frequenzumrichter- oder Einphasenmotoren Die Konstruktion vermindert die Schwingungen, die Geräusche und Resonanzpunkte im ganzen Frequenzbereich, die bei dieser Betriebsart auftreten können.
- Bremsen Schutzart IP 65
- Bremsen in ATEX-Ausführung
 Bremsen geeignet für den Einsatz in explosionsgefährdeten Bereichen der Zone 22
- Bremsen in korrosionsgeschützter Ausführung
- Bremsen mit Mikroschalter oder induktiver Näherungsschalter Mikroschalter als Lüftweg- und Verschleißüberwachung oder zum überwachen der Handlüftfunktion
- Bremsen geeignet zum Geberanbau
- Bremsmotoren mit Zusatzschwungmasse. Die Zusatzschwungmasse dient dem ruckfreien Anfahren und Abbremsen und ist unter der Lüfterhaube eingebaut.
- Bremsmotoren mit Fremdkühlung. Zur Erzielung hoher Schalthäufigkeiten können die Bremsmotoren mit einer Fremdbelüftung ausgerüstet werden.
- Bremsmotoren mit zweitem Wellenende (Wellenende auf Anfrage)
- Doppelbremsen für Bühnentechnik/Theaterausführung (siehe Abschnitt Bremsmotoren mit Doppelbremse für Bühnentechnik)

Technische Daten zu Bremsmotoren

2-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs-	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/2-B4	IE2	0,18	2835	0,50	0,74	60,4	0,61	5,00	3,20	3,55	4,00	0,00016	5,50
63L/2-B4	IE2	0,25	2820	0,60	0,81	64,8	0,85	5,45	3,05	3,35	4,00	0,00021	6,00
71K/2-B4	IE2	0,37	2835	0,85	0,82	69,5	1,25	5,35	2,60	3,05	4,00	0,00036	7,00
71L/2-B4	IE2	0,55	2840	1,20	0,83	74,1	1,85	5,95	3,00	3,30	4,00	0,00043	8,00
80K/2-B8	IE3	0,75	2840	1,65	0,81	80,7	2,52	5,95	3,40	3,60	8,00	0,00070	10,50
80L/2-B8	IE3	1,10	2850	2,35	0,81	82,7	3,69	6,80	4,50	4,00	8,00	0,00085	11,50
90L/2-B16	IE3	1,50	2910	3,05	0,83	84,2	4,92	9,15	4,30	4,70	16,00	0,00175	19,00
90L/2-B16	IE3	2,20	2875	4,50	0,83	85,9	7,31	7,70	3,95	3,90	16,00	0,00175	19,00
100V/2-B32	IE3	3,00	2930	5,70	0,87	87,1	9,78	11,95	5,75	5,50	32,00	0,00400	33,50
112M/20- B60	IE3	4,00	2940	7,75	0,85	88,1	13,0	10,70	3,90	4,80	60,00	0,00617	43,50
132S/20- B80	IE3	5,50	2945	10,1	0,88	89,2	17,8	10,45	3,70	4,60	80,00	0,01300	56,00
132S/200- B80	IE3	7,50	2945	13,8	0,87	90,1	24,3	11,00	4,25	4,95	80,00	0,01550	62,00
160M/20- B150	IE3	11,00	2965	19,7	0,88	91,2	35,4	12,35	5,00	5,30	150,00	0,04060	131,00
160L/2- B150	IE3	15,00	2960	26,2	0,90	91,9	48,4	12,00	5,15	5,05	150,00	0,04710	147,00
160L/20- B150	IE3	18,50	2960	33,7	0,86	92,4	59,7	12,60	3,90	5,60	150,00	0,05760	153,00
180L/20- B260	IE3	22,00	2965	38,0	0,90	92,7	70,9	11,95	3,90	4,70	260,00	0,09000	199,00
-	IE3	30,00					Techniso	he Daten	in Vorber	eitung			

Änderungen vorbehalten

2-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3600 min⁻¹

Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	Ι _ν [Α]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/2-B4	IE2	0,18	3455	0,45	0,70	64,0	0,50	5,85	3,95	4,40	4,00	0,00016	5,50
-	IE2	0,25					Technisch	ne Daten ir	n Vorbere	eitung			
71K/2-B4	IE2	0,37	3445	0,79	0,76	72,0	1,03	6,25	3,45	3,85	4,00	0,00036	7,00
71L/2-B4	IE2	0,55	3465	1,05	0,80	74,0	1,52	7,35	3,50	3,90	4,00	0,00043	8,00
80K/2-B8	IE3	0,75	3455	1,45	0,80	77,0	2,07	7,30	4,45	4,15	8,00	0,00070	10,50
80L/2-B8	IE3	1,10	3470	2,05	0,80	84,0	3,03	8,00	4,55	4,55	8,00	0,00085	11,50
90L/2-B16	IE3	1,50	3515	2,60	0,84	85,5	4,08	10,70	4,35	5,25	16,00	0,00175	19,00
90L/2-B16	IE3	2,20	3500	3,85	0,82	86,5	6,00	9,10	4,00	4,60	16,00	0,00175	19,00
100V/2-B32	IE3	3,00	3530	4,80	0,88	88,5	8,12	13,50	4,80	5,50	32,00	0,00400	33,50
132S/200- B80	IE3	4,00	3560	6,25	0,90	88,5	10,7	12,50	4,35	5,50	80,00	0,01550	62,00
132S/200- B80	IE3	5,50	3555	8,55	0,90	89,5	14,8	11,96	4,15	5,30	80,00	0,01550	62,00
132S/200- B80	IE3	7,50	3550	11,7	0,89	90,2	20,2	11,05	3,85	4,90	80,00	0,01550	62,00
160M/20- B150	IE3	11,00	3565	16,8	0,89	91,0	29,5	12,35	4,50	4,90	150,00	0,04060	131,00
160M/20- B150	IE3	15,00	3560	23,2	0,88	91,0	40,2	11,05	4,05	4,40	150,00	0,04060	131,00
-	IE3	18,50					Technisch	ne Daten ir	n Vorbere	eitung			
-	IE3	22,00											
-	IE3	30,00											

Änderungen vorbehalten

4-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min-1

Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs-	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A /	M _A /	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/4-B4	IE2	0,12	1360	0,40	0,71	59,1	0,84	3,10	2,05	2,30	4,00	0,00021	5,50
63L/4-B4	IE2	0,18	1370	0,60	0,63	64,7	1,25	3,40	2,95	2,95	4,00	0,00026	6,00
71K/4-B4	IE2	0,25	1415	0,70	0,70	68,5	1,69	4,35	2,30	2,65	4,00	0,00053	7,50
71L/4-B4	IE2	0,37	1405	0,95	0,76	72,7	2,51	4,55	2,40	2,60	4,00	0,00065	8,50
80K/4-B8	IE2	0,55	1405	1,40	0,74	77,1	3,74	4,65	2,35	2,65	8,00	0,00105	10,50
80L/40-B8	IE3	0,75	1425	1,85	0,72	82,5	5,03	6,00	3,30	3,15	8,00	0,00156	16,00
90L/40-B16	IE3	1,10	1445	2,50	0,75	84,1	7,27	6,85	3,50	4,00	16,00	0,00305	19,00
90V/4-B16	IE3	1,50	1440	3,35	0,76	85,3	9,95	7,20	3,40	4,15	16,00	0,00375	23,00
100L/400- B32	IE3	2,20	1450	4,65	0,79	86,7	14,5	8,10	3,85	4,25	32,00	0,00599	28,50
100V/4- B32	IE3	3,00	1445	6,25	0,80	87,7	19,8	7,95	3,55	4,20	32,00	0,00758	33,50
112V/4- B60	IE3	4,00	1455	8,15	0,80	88,6	26,3	8,80	3,70	4,55	60,00	0,01328	45,50
132M/4- B80	IE3	5,50	1465	11,2	0,79	89,6	35,9	8,35	3,75	4,00	80,00	0,02830	72,00
132V/4- B80	IE3	7,50	1465	15,4	0,78	90,4	48,9	8,85	4,25	4,50	80,00	0,03830	82,00
160L/40- B150	IE3	11,00	1475	21,7	0,80	91,4	71,2	9,60	4,00	3,90	150,00	0,08160	154,00
160V/4- B150	IE3	15,00	1475	29,9	0,79	92,1	97,1	8,95	3,80	3,85	150,00	0,09270	164,00
180L/40- B260	IE3	18,50	1475	34,9	0,83	92,6	119,8	9,25	4,10	3,60	260,00	0,17720	244,00
-	IE3	22,00					Technische	Daten in	Vorbere	itung			

Änderungen vorbehalten

4-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1800 min-1

			1						1				
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs-	Anzugs- zu Bemessungs-	Kipp-zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
-	IE2	0,12				٦	echnische	Daten in \	Vorbereit	ung			
63L/4-B4	IE2	0,18	1695	0,55	0,56	68,0	1,01	4,05	3,75	3,75	4,00	0,00026	6,00
71K/4-B4	IE2	0,25	1730	0,65	0,65	70,0	1,38	5,05	2,65	3,15	4,00	0,00053	7,50
71L/4-B4	IE2	0,37	1720	0,80	0,71	72,0	2,05	5,30	2,70	3,00	4,00	0,00650	8,50
80K74-B8	IE2	0,55	1720	1,20	0,71	75,5	3,05	5,50	2,70	3,05	8,00	0,00099	9,00
80L/40- B8	IE3	0,75	1735	1,55	0,71	83,5	4,13	6,70	3,30	3,60	8,00	0,00156	16,00
90V/4-	IE3	1,10	1745	2,05	0,77	86,5	6,02	8,40	3,70	4,30	16,00	0,00375	23,00
B16 90V/4- B16	IE3	1,50	1745	2,85	0,77	86,5	8,21	8,10	3,70	4,45	16,00	0,00375	23,00
112M/4- B60	IE3	2,20	1760	3,95	0,78	89,5	11,9	9,75	3,15	4,70	60,00	0,01070	39,50
112V/4- B60	IE3	3,00	1760	5,30	0,79	89,5	16,3	10,60	3,80	5,30	60,00	0,01328	45,50
132M/4- B80	IE3	4,00	1770	7,05	0,79	89,5	21,6	9,95	4,20	4,45	80,00	0,02830	72,00
132V/4- B80	IE3	5,50	1770	9,70	0,78	91,7	29,7	9,85	4,15	5,05	80,00	0,03830	82,00
160L/40- B150	IE3	7,50	1780	12,7	0,81	91,7	40,2	9,40	3,25	3,95	150,00	0,08160	154,00
160V/4- B150	IE3	11,00	1780	18,9	0,79	92,4	59,0	9,15	3,20	4,15	150,00	0,09270	164,00
160V/4- B150	IE3	15,00	1775	25,4	0,80	93,0	80,7	8,25	2,85	3,75	150,00	0,09270	164,00
180L/40- B260	IE3	18,50	1780	30,3	0,82	93,6	99,2	9,10	3,25	4,00	260,00	0,17720	244,00
-	IE3	22,00				7	echnische	Daten in \	Vorbereit	ung			

Änderungen vorbehalten

6-polig 400V-50Hz IC 411

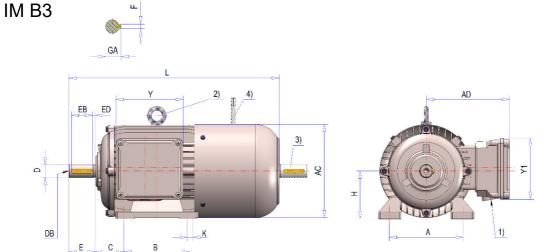
Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min-1

					1	1							
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K /	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/6-B4	-	0,09	870	0,40	0,75	43,3	0,99	2,50	1,70	1,80	4,00	0,00030	5,50
63L/6-B4	IE2	0,12	915	0,55	0,57	50,6	1,25	2,60	2,65	2,75	4,00	0,00043	6,00
71K/6-B4	IE2	0,18	930	0,65	0,65	56,6	1,85	3,05	1,80	2,30	4,00	0,00082	7,50
71L/6-B4	IE2	0,25	925	0,80	0,69	61,6	2,58	3,25	1,75	2,20	4,00	0,00102	8,50
80K/6-B8	IE2	0,37	930	1,10	0,70	67,6	3,80	3,55	2,00	2,35	8,00	0,00197	11,50
80L/6-B8	IE2	0,55	915	1,50	0,74	73,1	5,74	3,80	2,05	2,20	8,00	0,00245	12,50
90L/60-B16	IE3	0,75	945	2,05	0,66	78,9	7,58	5,00	2,95	3,20	16,00	0,00439	20,20
90V/6-B16	IE3	1,10	950	2,85	0,69	81,0	11,1	5,15	2,45	3,05	16,00	0,00669	24,50
100V/6-B32	IE3	1,50	955	3,60	0,73	82,5	15,0	5,80	2,90	3,25	32,00	0,01162	31,50
112V/6-B60	IE3	2,20	965	5,25	0,70	84,3	21,8	7,40	3,70	4,20	60,00	0,02060	48,50
132M/6-B80	IE3	3,00	970	7,50	0,67	85,6	29,5	6,55	3,35	3,40	80,00	0,03310	60,00
132M/600-B80	IE3	4,00	975	10,2	0,65	86,8	39,2	7,50	3,85	3,80	80,00	0,04320	72,00
132V/6-B80	IE3	5,50	970	12,5	0,72	88,0	54,1	7,55	3,60	3,70	80,00	0,05137	83,00
160L/6-B150	IE3	7,50	980	15,5	0,77	89,1	73,1	9,00	3,20	4,35	150,00	0,11110	147,00
180L/6-B260	IE3	11,00	980	23,1	0,76	90,3	107,2	8,70	3,20	4,20	260,00	0,17590	219,00

Änderungen vorbehalten

6-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1200 min-1


Туре	Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos ф	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K /	M _{Bmax} [Nm]	J [kgm²]	m [kg]
	-	0,09					Technisch	e Daten in	Vorbereit	ung			
	IE2	0,12											
	IE2	0,18											
71L/6-B4	IE2	0,25	1140	0,70	0,62	59,5	2,09	3,85	2,20	2,75	4,00	0,00102	8,50
	IE2	0,37			I		Technisch	e Daten in	Vorbereit	ung			l
	IE2	0,55											
90V/6-B16	IE3	0,75	1160	1,65	0,68	82,5	6,17	5,75	2,40	3,35	16,00	0,00669	24,50
	IE3	1,10			•	•	Technisch	e Daten in	Vorbereit	ung			
	IE3	1,50											
	IE3	2,20											
	IE3	3,00											
	IE3	4,00											
	IE3	5,50											
	IE3	7,50											
	IE3	11,00											

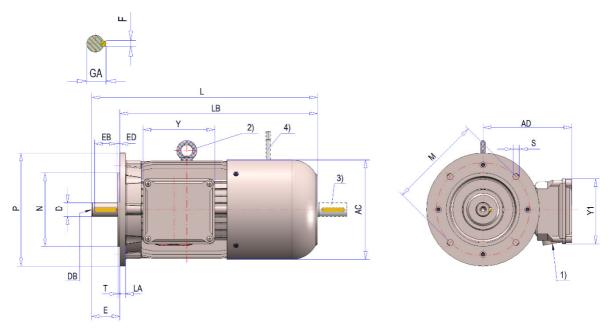
Änderungen vorbehalten

Maßblätter zu Bremsmotoren

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Abmessungen auf Anfrage)
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Änderungen vorbehalten

Тур		В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R 63 K/L	B4	80	100	7	63	40	11	23	M4	123	121	117	103	12,5	4	18	2,5	260
R 71 K/L	B4	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	298
R 80 K/L	B8	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	331
R 90 S	B16	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	369
R 90 L	B16	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	394
R 90 V	B16	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	434
R 100 L	B32	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	444
R 100 V	B32	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	494
R 112 M	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	464
R 112 V	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	504
R 132 S	B80	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537
R 132 M	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	575
R 132 V	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	625
R 160 M	B150	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	682
R 160 L	B150	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	726
R 160 V	B150	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	756
R 180 M	B260	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	768
R 180 L	B260	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	806


^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

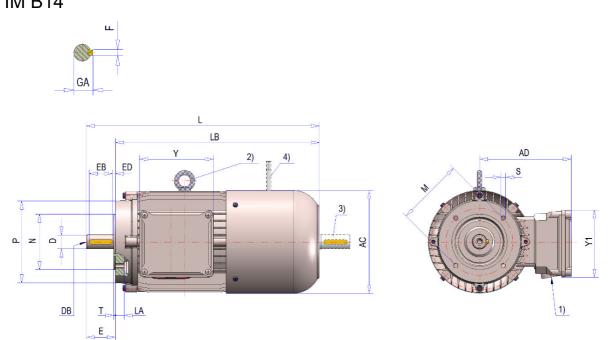
Datum: 10.06.2025 Version: 2.6

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Gesamtlänge "L" ändern. (Abmessung auf Anfrage)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Abmessungen auf Anfrage)
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур		D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
RF 63 K/L	B4	11	23	M4	123	121	117	103	12,5	4	18	2,5	260	237	9	115	95	140	3	10
RF 71 K/L	B4	14	30	M5	138	130	117	103	16	5	25	2,5	298	268	9,5	130	110	160	3,5	9,5
RF 80 K/L	B8	19	40	M6	156	144	127	115	21,5	6	32	4	331	291	11,5	165	130	200	3,5	11
RF 90 S	B16	24	50	M8	176	157	127	115	27	8	40	5	369	319	11,5	165	130	200	3,5	10,5
RF 90 L	B16	24	50	M8	176	157	127	115	27	8	40	5	394	344	11,5	165	130	200	3,5	10,5
RF 90 V	B16	24	50	M8	176	157	127	115	27	8	40	5	434	384	11,5	165	130	200	3,5	10,5
RF 100 L	B32	28	60	M10	194	166	127	115	31	8	50	5	444	384	14	215	180	250	4	15,5
RF 100 V	B32	28	60	M10	194	166	127	115	31	8	50	5	494	434	14	215	180	250	4	15,5
RF 112 M	B60	28	60	M10	218	178	127	115	31	8	50	5	464	404	14	215	180	250	4	11
RF 112 V	B60	28	60	M10	218	178	127	115	31	8	50	5	504	444	14	215	180	250	4	11
RF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	537	457	14	265	230	300	4	12
RF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	575	495	14	265	230	300	4	12
RF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	625	545	14	265	230	300	4	12
RF 160 M	B150	42	110	M16	310	244	186	186	45	12	90	10	682	572	18	300	250	350	5	14
RF 160 L	B150	42	110	M16	310	244	186	186	45	12	90	10	726	616	18	300	250	350	5	14
RF 160 V	B150	42	110	M16	310	244	186	186	45	12	90	10	756	646	18	300	250	350	5	14
RF 180 M	B260	48	110	M16	348	254	175	190	51,5	14	100	5	768	658	18	300	250	350	5	14
RF 180 L	B260	48	110	M16	348	254	175	190	51,5	14	100	5	806	696	18	300	250	350	5	14


^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

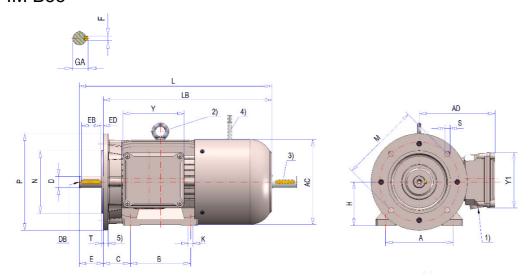
Datum: 10.06.2025 Version: 2.6

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Länge "L" und "LB" ändern. (Abmessung auf Anfrage)

Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Abmessungen auf Anfrage)
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

	ingen vo																			
Тур		D	E	DB	AC	AD	Y	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RF 63 K/L	B4	11	23	M4	123	121	117	103	12,5	4	18	2,5	260	237	M5	75	60	90	2,5	8
RF 71 K/L	B4	14	30	M5	138	130	117	103	16	5	25	2,5	298	268	M6	85	70	105	2,5	10
RF 80 K/L	B8	19	40	M6	156	144	127	115	21,5	6	32	4	331	291	M6	100	80	120	3	9,5
RF 90 S	B16	24	50	M8	176	157	127	115	27	8	40	5	369	319	M8	115	95	140	3	15
RF 90 L	B16	24	50	M8	176	157	127	115	27	8	40	5	394	344	M8	115	95	140	3	15
RF 90 V	B16	24	50	M8	176	157	127	115	27	8	40	5	434	384	M8	115	95	140	3	15
RF 100 L	B32	28	60	M10	194	166	127	115	31	8	50	5	444	384	M8	130	110	160	3,5	17
RF 100 V	B32	28	60	M10	194	166	127	115	31	8	50	5	494	434	M8	130	110	160	3,5	17
RF 112 M	B60	28	60	M10	218	178	127	115	31	8	50	5	464	404	M8	130	110	160	3,5	16
RF 112 V	B60	28	60	M10	218	178	127	115	31	8	50	5	504	444	M8	130	110	160	3,5	16
RF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	537	457	M10	165	130	200	3,5	15
RF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	575	495	M10	165	130	200	3,5	15
RF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	625	545	M10	165	130	200	3,5	15
RF 160 M	B150	42	110	M16	310	244	186	186	45	12	90	10	709	599	M12	215	180	250	4	14
RF 160 L	B150	42	110	M16	310	244	186	186	45	12	90	10	753	643	M12	215	180	250	4	14
RF 160 V	B150	42	110	M16	310	244	186	186	45	12	90	10	783	673	M12	215	180	250	4	14


^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Datum: 10.06.2025 Version: 2.6

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Länge "L" und "LB" ändern. (Abmessung auf Anfrage)

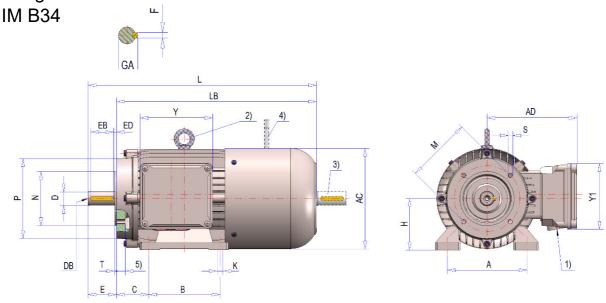
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform IM B35

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Abmessungen auf Anfrage)
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage)
- 5) Maße LA (siehe Abschnitt Baugröße: 63 180 / Kühlart: IC411 / Schutzart: IP 54 IP 55 / Bauform IM B5)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten

Тур		D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA
RF 63 K/L	B4	11	23	M4	123	121	117	103	12,5	4	18	2,5	260	237	9	115	95	140	3	10
RF 71 K/L	B4	14	30	M5	138	130	117	103	16	5	25	2,5	298	268	9,5	130	110	160	3,5	9,5
RF 80 K/L	B8	19	40	M6	156	144	127	115	21,5	6	32	4	331	291	11,5	165	130	200	3,5	11
RF 90 S	B16	24	50	M8	176	157	127	115	27	8	40	5	369	319	11,5	165	130	200	3,5	10,5
RF 90 L	B16	24	50	M8	176	157	127	115	27	8	40	5	394	344	11,5	165	130	200	3,5	10,5
RF 90 V	B16	24	50	M8	176	157	127	115	27	8	40	5	434	384	11,5	165	130	200	3,5	10,5
RF 100 L	B32	28	60	M10	194	166	127	115	31	8	50	5	444	384	14	215	180	250	4	15,5
RF 100 V	B32	28	60	M10	194	166	127	115	31	8	50	5	494	434	14	215	180	250	4	15,5
RF 112 M	B60	28	60	M10	218	178	127	115	31	8	50	5	464	404	14	215	180	250	4	11
RF 112 V	B60	28	60	M10	218	178	127	115	31	8	50	5	504	444	14	215	180	250	4	11
RF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	537	457	14	265	230	300	4	12
RF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	575	495	14	265	230	300	4	12
RF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	625	545	14	265	230	300	4	12
RF 160 M	B150	42	110	M16	310	244	186	186	45	12	90	10	682	572	18	300	250	350	5	14
RF 160 L	B150	42	110	M16	310	244	186	186	45	12	90	10	726	616	18	300	250	350	5	14
RF 160 V	B150	42	110	M16	310	244	186	186	45	12	90	10	756	646	18	300	250	350	5	14
RF 180 M	B260	48	110	M16	348	254	175	190	51,5	14	100	5	768	658	18	300	250	350	5	14
RF 180 L	B260	48	110	M16	348	254	175	190	51,5	14	100	5	806	696	18	300	250	350	5	14


^{*} Bauform IM B35 / IM 2001, IM V15 / IM 2011, IM V35 / IM 2031 (Abschnitt Bauformen)

Datum: 10.06.2025 Version: 2.6

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Länge "L" und "LB" ändern. (Abmessung auf Anfrage)

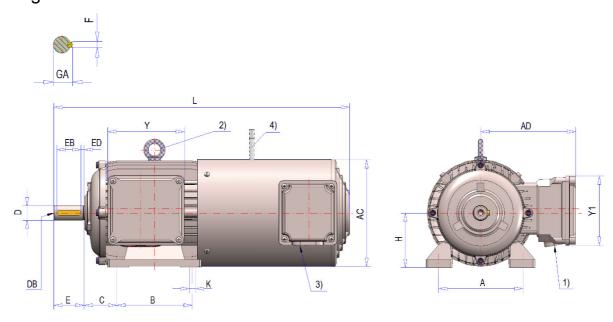
Baugröße: 63 – 180 / Kühlart: IC411 / Schutzart: IP 54 – IP 55 / Bauform

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (Abmessungen auf Anfrage)
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage)
- 5) Maße LA (siehe Abschnitt Baugröße: 63 180 / Kühlart: IC411 / Schutzart: IP 54 IP 55 / Bauform IM B14)

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten

_																								
Тур		В	Α	K	Н	С	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т
R+F 63 K/L	B4	80	100	7	63	40	11	23	M4	123	121	117	103	12,5	4	18	2,5	260	237	M5	75	60	90	2,5
R+F 71 K/L	B4	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	298	268	M6	85	70	105	2,5
R+F 80 K/L	B8	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	331	291	M6	100	80	120	3
R+F 90 S	B16	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	369	319	M8	115	95	140	3
R+F 90 L	B16	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	394	344	M8	115	95	140	3
R+F 90 V	B16	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	434	384	M8	115	95	140	3
R+F 100 L	B32	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	444	384	M8	130	110	160	3,5
R+F 100 V	B32	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	494	434	M8	130	110	160	3,5
R+F 112 M	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	464	404	M8	130	110	160	3,5
R+F 112 V	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	504	444	M8	130	110	160	3,5
R+F 132 S	B80	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537	457	M10	165	130	200	3,5
R+F 132 M	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	575	495	M10	165	130	200	3,5
R+F 132 V	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	625	545	M10	165	130	200	3,5
R+F 160 M	B150	210	254	14,5	160	135	42	110	M16	310	244	186	186	45	12	90	10	709	599	M12	215	180	250	4
R+F 160 L	B150	254	254	14,5	160	135	42	110	M16	310	244	186	186	45	12	90	10	753	643	M12	215	180	250	4
R+F 160 V	B150	254	254	14,5	160	135	42	110	M16	310	244	186	186	45	12	90	10	783	673	M12	215	180	250	4

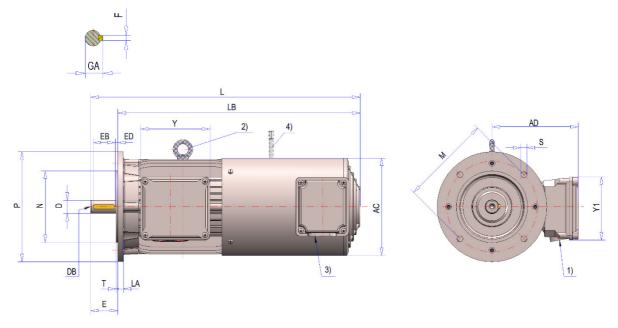

^{*} Bauform IM B34 / IM 2101, IM V17 / IM 2111, IM V37 / IM 2131 (*Abschnitt Bauformen*)

Datum: 10.06.2025 Version: 2.6

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Länge "L" und "LB" ändern. (Abmessung auf Anfrage)

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 54 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten


Тур		В	Α	K	Н	С	D	Е	DB	AC	AD	Y	Y1	GA	F	EB	ED	L
R 63 K/L	B4	80	100	7	63	40	11	23	M4	124	121	117	103	12,5	4	18	2,5	324
R 71 K/L	B4	90	112	7	71	45	14	30	M5	139	130	117	103	16	5	25	2,5	367
R 80 K/L	B8	100	125	9,5	80	50	19	40	M6	157	144	127	115	21,5	6	32	4	402
R 90 S	B16	100	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	437
R 90 L	B16	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	462
R 90 V	B16	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	502
R 100 L	B32	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	510
R 100 V	B32	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	560
R 112 M	B60	140	190	11,2	112	70	28	60	M10	219	178	127	115	31	8	50	5	533
R 112 V	B60	140	190	11,2	112	70	28	60	M10	219	178	127	115	31	8	50	5	573
R 132 S	B80	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	652
R 132 M	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	690
R 132 V	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	740
R 160 M	B150	210	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	792
R 160 L	B150	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	836
R 160 V	B150	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	866
R 180 M	B260	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	925
R 180 L	B260	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	963

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 54 / Bauform IM B5

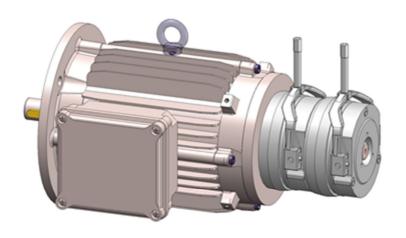
- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

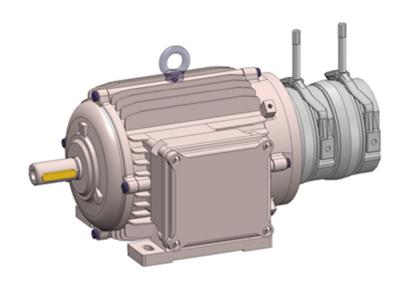
	<u> </u>																			
Тур		D	E	DB	AC	AD	Y	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RF 63 K/L	B4	11	23	M4	124	121	117	103	12,5	4	18	2,5	324	301	9	115	95	140	3	10
RF 71 K/L	B4	14	30	M5	139	130	117	103	16	5	25	2,5	367	337	9,5	130	110	160	3,5	9,5
RF 80 K/L	B8	19	40	M6	157	144	127	115	21,5	6	32	4	402	362	11,5	165	130	200	3,5	11
RF 90 S	B16	24	50	M8	177	157	127	115	27	8	40	5	437	387	11,5	165	130	200	3,5	10,5
RF 90 L	B16	24	50	M8	177	157	127	115	27	8	40	5	462	412	11,5	165	130	200	3,5	10,5
RF 90 V	B16	24	50	M8	177	157	127	115	27	8	40	5	502	416	11,5	165	130	200	3,5	10,5
RF 100 L	B32	28	60	M10	195	166	127	115	31	8	50	5	510	450	14	215	180	250	4	15,5
RF 100 V	B32	28	60	M10	195	166	127	115	31	8	50	5	560	500	14	215	180	250	4	15,5
RF 112 M	B60	28	60	M10	219	178	127	115	31	8	50	5	533	473	14	215	180	250	4	11
RF 112 V	B60	28	60	M10	219	178	127	115	31	8	50	5	577	513	14	215	180	250	4	11
RF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	652	572	14	265	230	300	4	12
RF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	690	610	14	265	230	300	4	12
RF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	740	660	14	265	230	300	4	12
RF 160 M	B150	42	110	M16	311	244	186	186	45	12	90	10	792	682	18	300	250	350	5	14
RF 160 L	B150	42	110	M16	311	244	186	186	45	12	90	10	836	726	18	300	250	350	5	14
RF 160 V	B150	42	110	M16	311	244	186	186	45	12	90	10	866	756	18	300	250	350	5	14
RF 180 M	B260	48	110	M16	348	254	175	190	51,5	14	100	5	925	815	18	300	250	350	5	14
RF 180 L	B260	48	110	M16	348	254	175	190	51,5	14	100	5	963	853	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Datum: 10.06.2025 Version: 2.6

Baugröße: 63 – 180 / Kühlart: IC416 / Schutzart: ≥IP 54 / Bauform IM B14


- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten


-		_	-			4.5	V	3//4		-	ED	FD			•			-	-	
Тур		D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	ı	LA
RF 63 K/L	B4	11	23	M4	124	121	117	103	12,5	4	18	2,5	324	301	M5	75	60	90	2,5	8
RF 71 K/L	B4	14	30	M5	139	130	117	103	16	5	25	2,5	367	337	M6	85	70	105	2,5	10
RF 80 K/L	B8	19	40	M6	157	144	127	115	21,5	6	32	4	402	362	M6	100	80	120	3	9,5
RF 90 S	B16	24	50	M8	177	157	127	115	27	8	40	5	437	387	M8	115	95	140	3	15
RF 90 L	B16	24	50	M8	177	157	127	115	27	8	40	5	462	412	M8	115	95	140	3	15
RF 90 V	B16	24	50	M8	177	157	127	115	27	8	40	5	502	452	M8	115	95	140	3	15
RF 100 L	B32	28	60	M10	195	166	127	115	31	8	50	5	510	450	M8	130	110	160	3,5	17
RF 100 V	B32	28	60	M10	195	166	127	115	31	8	50	5	560	500	M8	130	110	160	3,5	17
RF 112 M	B60	28	60	M10	219	178	127	115	31	8	50	5	533	473	M8	130	110	160	3,5	16
RF 112 V	B60	28	60	M10	219	178	127	115	31	8	50	5	573	513	M8	130	110	160	3,5	16
RF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	652	572	M10	165	130	200	3,5	15
RF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	690	610	M10	165	130	200	3,5	15
RF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	740	660	M10	165	130	200	3,5	15
RF 160 M	B150	42	110	M16	311	244	186	186	45	12	90	10	819	709	M12	215	180	250	4	14
RF 160 L	B150	42	110	M16	311	244	186	186	45	12	90	10	863	753	M12	215	180	250	4	14
RF 160 V	B150	42	110	M16	311	244	186	186	45	12	90	10	893	783	M12	215	180	250	4	14

^{*} Bauform IM B34 / IM 2101, IM V17 / IM 2111, IM V37 / IM 2131 (Abschnitt Bauformen)

Bremsmotoren **mit Doppelbremse für Bühnentechnik** Bremsmotoren mit Doppelbremse für Bühnentechnik

Bremsmotoren mit Doppelbremse für Bühnentechnik Bremsmotoren für Bühnentechnik

Speziell für den Einsatz in der Bühnentechnik in Theatern und Opernhäusern wurde die HEW-Baureihe der Bühnentechnikmotoren entwickelt. Unsere Motoren treiben Vorhänge, Podien, Dreh-, Hebe- oder Schiebebühnen sowie Bühnenaufbauten an. Dieses erfolgt unbemerkt für den Zuschauer und ohne Gefährdung der Darsteller und des Bühnenpersonals.

Für die spezifischen Anforderungen der Bühnentechnik bietet HEW-Bremsmotoren im Leistungsbereich von 0,37 - 30,0 kW in 4poliger-Ausführung an (optional auch in 6poliger-Ausführung), die in der Oberund Untermaschinerie von Theatern eingesetzt werden können. Die Motoren erfüllen die hohen Anforderungen der DIN 56950 und der BGV C1. Für Personen, die sich im Einflussbereich der Antriebe aufhalten, wird so höchste Arbeitssicherheit gewährleistet. Alle Motoren sind mit doppelter Bremse ausgestattet, da permanent unter schwebenden Lasten, wie z. B. Teilen der Bühnendekoration oder Leuchten, gearbeitet wird. In der Standardausführung sind die Bremsen mit einer Handlüftung ausgerüstet. Durch die Betätigung der Handlüftung bei stromlosem Zustand wird die Bremse mechanisch gelüftet und die Welle lässt sich leicht drehen.

Auch hinsichtlich des Geräuschpegels haben die Antriebe ein hervorragendes Niveau. Die Wicklungen sind mit Phasenisolation ausgerüstet, wodurch die Antriebe für den Betrieb am Frequenzumformer geeignet sind. Somit lassen sich die jeweiligen Antriebslösungen höchst flexibel und individuell oder in Gruppen regeln und steuern.

Optional können die Antriebe mit Kaltleitertemperaturfühlern (PTC) oder Thermoschaltern (PTO) ausgerüstet werden.

Als Geber oder Rückmeldesystem können Inkrementaldrehgeber (TTL / HTL / sin-cos), Absolutwertdrehgeber (Single- oder Multiturn, Kombigeber), Sensorlager oder induktive Sensorik angebaut werden.

Das Motorgehäuse ist in der Standardausführung in Aluminium ausgeführt, optional können die Motoren ab Baugröße 80 auch in Graugussausführung geliefert werden.

Folgende Objekte wurden mit Bühnenmotoren der HEW ausgerüstet:

Semperoper Dresden Deutschland Stadttheater Paderborn Deutschland Anhaltinische Theater Dessau Deutschland Stadttheater Saarbrücken Deutschland Kulturhaus Kornwestheim Deutschland Royal Opera House Muscat Oman

Akademische Opern- und Ballett-Theater Nowosibirsk Russland

Landestheater Den Haag Niederlande

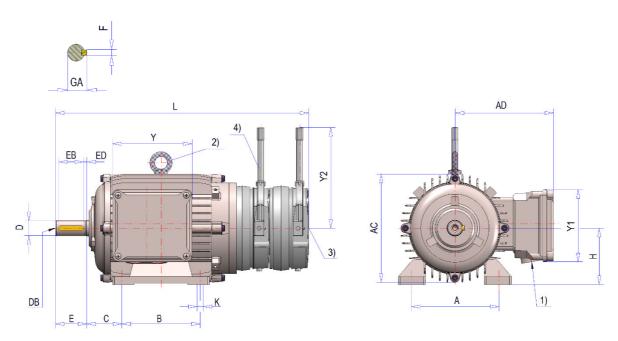
Technische Daten zu Bremsmotoren für Bühnentechnik

4-polig 400V-50Hz IC 410 unbelüftet S3-40%

Wärmeklasse: F Synchrone Drehzahl: 1500 min⁻¹

VVaimeniasse. 1		_		IIZaili. 130		1	1	1			I
Baugröße	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Brems	Massen-	Gewicht
Тур	leistung	drehzahl	strom	faktor	moment	zu-Nenn-	zu-Nenn-		Moment	trägheits-	IM B3
						strom	moment	moment	M_{Bmay}	moment	
RU	P_N	n_N	I _N	cos φ	M_N	I _A /I _N	M _A /M _N	M _K /M _N	NM	J	М
	kW	min ⁻¹	Α		Nm					kgm²	ca. kg
71L/4-PrDB7H	0,37	1400	1,0	0,72	2,5	4,2	2,4	2,6	2 x 4	0,00068	9,5
80K/4- PrDB7H	0,55	1375	1,4	0,76	3,9	4,0	2,3	2,2	2 x 7	0,00108	13
80L/4-PrDB7H	0,75	1400	1,90	0,75	5,0	4,2	2,1	2,3	2 x 7	0,00135	14
90S/4-PrDB14H	1,1	1420	2,65	0,75	7,4	4,5	2,2	2,6	2 x 14	0,00228	19,5
90L/4-PrDB17,5H	1,5	1410	3,25	0,80	10,2	5,1	2,3	2,7	2 x 17,5	0,00278	21
100L/4-PrDB28H	2,2	1420	4,9	0,81	14,9	4,6	1,8	2,3	2x 28	0,00477	29
100L/40-PrDB35H	3,0	1420	6,5	0,81	19,9	5,1	2,1	2,5	2 x 35	0,00588	33
112M/4-PrDB42H	4,0	1440	8,30	0,81	26,5	6,2	2,3	3,0	2 x 42	0,0119	47
132S/4-PrDB70H	5,5	1450	12	0,75	36,5	5,7	2,3	2,4	2 x 70	0,0235	67
132M/40-PrDB89H	7,5	1450	14,5	0,85	49,5	5,9	2,2	2,8	2 x 89	0,0300	84
132M/40-PrDB89H	9,2	1450	18,3	0,81	60	7,5	3,3	3,8	2 x 89	0,034	90
160M/4-PrDB107H	11	1440	22,5	0,81	72	4,7	2,3	2,5	2 x 107	0,0569	139
160L/4-PrDB187H	15	1460	30,2	0,80	98	5,0	2,7	3	2 x 187	0,0724	159
160L/40-PrDB187H	17	1470	32,5	0,86	110	5,6	1,9	2,7	2 x 187	0,0861	172
180M/4-PrDB225H	18,5	1470	36	0,86	120	4,2	3,1	3,2	2 x 225	0,1268	221
180L/4-PrDB225H	22	1460	43	0,86	144	5,5	2,6	2,7	2 x 225	0,1360	244
180L/40-PrDB300H	30	1470	59	0,81	194	4,6	1,8	2,6	2 x 300	0,1796	270

Änderungen vorbehalten


Datum: 10.06.2025 Version: 2.6

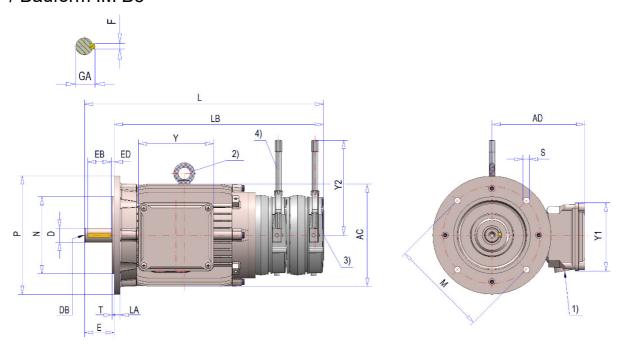
Maßblätter zu Bremsmotoren für Bühnentechnik

Baugröße: 71 – 180 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55

/ Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (für Geberanbau, Handrad u.s.w.) Abmessungen auf Anfrage
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур		В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	Y2
RU 71 L	PrDB7	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	297	110
RU 80 K/L	PrDB7	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	348	120
RU 90 S	PrDB14	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	381	160
RU 90 L	PrDB17,5	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	406	160
RU 100 L	PrDB28	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	458	200
RU 100 L	PrDB35	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	458	200
RU 112 M	PrDB42	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	494	220
RU 132 S	PrDB70	140	216	11	132	89	38	80	M12	260	197	145	130	41	10	70	5	573	220
RU 132 M	PrDB89	178	216	11	132	89	38	80	M12	260	197	145	130	41	10	70	5	611	220
RU 160 M	PrDB107	210	254	14,5	160	108	42	110	M16	305	244	186	186	45	12	90	10	724	250
RU 160 L	PrDB187	254	254	14,5	160	108	42	110	M16	305	244	186	186	45	12	90	10	768	250
RU 180 M	PrDB225	241	279	13	180	121	48	110	M16	346	254	175	190	51,5	14	100	5	804	330
RU 180 L	PrDB300	279	279	13	180	121	48	110	M16	346	254	175	190	51,5	14	100	5	841	330

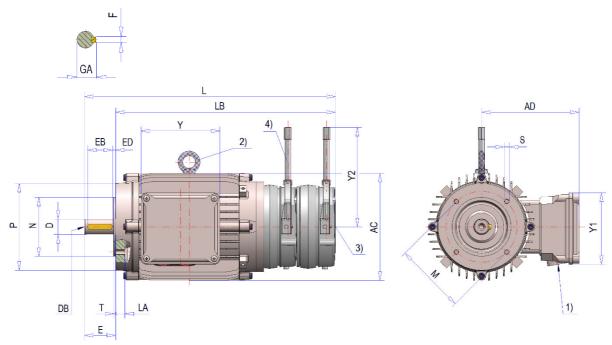

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Datum: 10.06.2025 Version: 2.6

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Gesamtlänge "L" ändern. (Abmessung auf Anfrage)

Baugröße: 71 – 180 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (für Geberanbau, Handrad u.s.w.) Abmessungen auf Anfrage
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

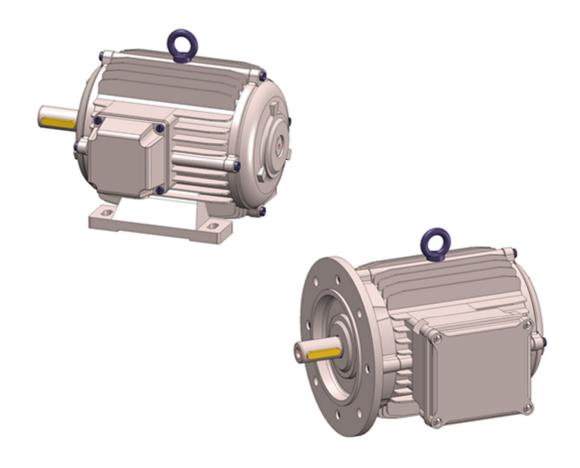

Тур		D	Е	DB	AC	AD	Υ	Y1	GA	F	ЕВ	ED	L	LB	S	M	N	Р	Т	LA	Y2
RUF 71 L	PrDB7	14	30	M5	138	130	117	103	16	5	25	2,5	297	267	9	130	110	160	3,5	10	110
RUF 80 K/L	PrDB7	19	40	M6	156	144	127	115	21,5	6	32	4	348	308	9	165	130	200	3,5	10	120
RUF 90 S	PrDB14	24	50	M8	176	157	127	115	27	8	40	5	381	331	9	165	130	200	3,5	10	160
RUF 90 L	PrDB17,5	24	50	M8	176	157	127	115	27	8	40	5	406	356	9	165	130	200	3,5	10	160
RUF 100 L	PrDB28	28	60	M10	194	166	127	115	31	8	50	5	458	398	9	215	180	250	4	14	200
RUF 100 L	PrDB35	28	60	M10	194	166	127	115	31	8	50	5	458	398	9	215	180	250	4	14	200
RUF 112 M	PrDB42	28	60	M10	218	178	127	115	31	8	50	5	494	434	11	215	180	250	4	13	220
RUF 132 S	PrDB70	38	80	M12	260	197	145	130	41	10	70	5	573	493	14	265	230	300	4	11,5	220
RUF 132 M	PrDB89	38	80	M12	260	197	145	130	41	10	70	5	611	531	14	265	230	300	4	11,5	220
RUF 160 M	PrDB107	42	110	M16	305	244	186	186	45	12	90	10	725	615	18	300	250	350	5	13,5	250
RUF 160 L	PrDB187	42	110	M16	305	244	186	186	45	12	90	10	769	659	18	300	250	350	5	13,5	250
RUF 180 M	PrDB225	48	110	M16	346	254	175	190	51,5	14	100	5	804	694	18	300	250	350	5	14	330
RUF 180 L	PrDB300	48	110	M16	346	254	175	190	51,5	14	100	5	842	732	18	300	250	350	5	14	330

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Länge "L" und "LB" ändern. (Abmessung auf Anfrage)

Baugröße: 71 – 180 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 2.WE optional (für Geberanbau, Handrad u.s.w.) Abmessungen auf Anfrage
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten


Тур		D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA	Y2
RUF 71 L	PrDB7	14	30	M5	138	130	117	103	16	5	25	2,5	297	267	M6	85	70	105	2,5	10	110
RUF 80 K/L	PrDB7	19	40	M6	156	144	127	115	21,5	6	32	4	348	308	M6	100	80	120	3	12,5	120
RUF 90 S	PrDB14	24	50	M8	176	157	127	115	27	8	40	5	381	331	M8	115	95	140	3	15	160
RUF 90 L	PrDB17,5	24	50	M8	176	157	127	115	27	8	40	5	406	356	M8	115	95	140	3	15	160
RUF 100 L	PrDB28	28	60	M10	194	166	127	115	31	8	50	5	458	398	M8	130	110	160	3,5	12,5	200
RUF 100 L	PrDB35	28	60	M10	194	166	127	115	31	8	50	5	458	398	M8	130	110	160	3,5	12,5	200
RUF 112 M	PrDB42	28	60	M10	218	178	127	115	31	8	50	5	494	434	M8	130	110	160	3,5	16	220
RUF 132 S	PrDB70	38	80	M12	260	197	145	130	41	10	70	5	573	493	M10	165	130	200	3,5	15	220
RUF 132 M	PrDB89	38	80	M12	260	197	145	130	41	10	70	5	611	531	M10	165	130	200	3,5	15	220
RUF 160 M	PrDB107	42	110	M16	305	244	186	186	45	12	90	10	725	615	M12	215	180	250	4	14	250
RUF 160 L	PrDB187	42	110	M16	305	244	186	186	45	12	90	10	769	659	M12	215	180	250	4	14	250

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

^{**} Bei Schutzart ≥ IP56 oder abweichende Bremsenzuordnung kann sich die Länge "L" und "LB" ändern. (Abmessung auf Anfrage)

Drehfeldmagnetmotoren Drehfeldmagnetmotoren

Drehfeldmagnetmotoren Drehfeldmagnetmotoren

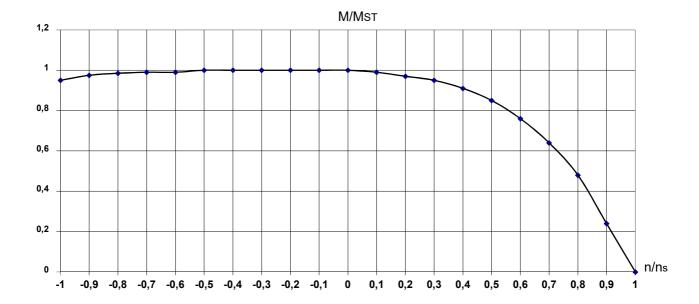
Drehfeldmagnetmotoren sind Drehstrom-Asynchronmotoren mit einer speziellen Käfigläufercharakteristik. Sie sind elektrisch so ausgelegt, dass sie beim Anlegen ihrer Bemessungsspannung im Stillstand ihr größtes Drehmoment (Stillstandsdrehmoment) entwickeln.

Es werden zwei Varianten angeboten:

IC 410 (unbelüftete Ausführung)

IC 416 (fremdbelüftete Ausführung)

Die Motoren sind mit dem Stillstandsdrehmoment im Dauerbetrieb (S1-Betrieb) bzw. mit dem 3-fachen Stillstandsdrehmoment im Aussetzbetrieb (S3 - 25%) einsetzbar.


Das Diagramm zeigt den prinzipiellen Verlauf der Drehzahl-Drehmoment-Kennlinie der Drehfeldmagneten.

In Abhängigkeit vom Gegenmoment stellt sich die Drehzahl ein.

Ein ständiger Betrieb zwischen 0 n/ns und 1 n/ns in der dafür vorgesehenen Betriebsart ist zulässig.

Sollte ein Betrieb zwischen -1 n/ns und 1 n/ns erforderlich sein, muss sichergestellt werden, dass die Grenztemperatur der Wärmeklasse nicht überschritten wird. Hier empfiehlt sich der Einsatz eines Motorvollschutzes (siehe Kapitel Motorschutz).

Diagramm: MST = Stillstandsdrehmoment ns = Synchrondrehzahl

Schaltung

Für S1-Betrieb werden die Motoren in Stern-Schaltung ausgeführt. Durch Umschalten in Dreieck-Schaltung erhöht sich das Stillstandsdrehmoment auf den 3-fachen Wert. Damit ist aber nur noch Aussetzbetrieb S3 - 25% zulässig (siehe Technische Daten zu Drehfeldmagnetmotoren).

Die angegebenen Stillstandsdrehmomente für Aussetzbetrieb S3 - 40% können nicht durch einfaches Umschalten erreicht werden, sondern bedürfen einer Wicklungsmodifizierung.

Datum: 10.06.2025 Version: 2.6

Drehmomentänderung

Die angegebenen Stillstandsdrehmomente stellen, bezogen auf die Bemessungsspannung, die maximalen Drehmomente dar.

Eine Verringerung des Drehmoments wird erreicht, indem die Spannung reduziert wird (M proportional U²).

Mit einem elektronischen Drehstromsteller kann das Stillstandsdrehmoment der Motoren somit stufenlos zwischen Maximum und Null verändert werden.

Sonderausführung

Als Sonderausführung können auch Drehfeldmagnete für den Betrieb am Einphasennetz geliefert werden.

Abweichende Baugrößen-Moment-Zuordnungen sind auf Anfrage möglich.

Technische Daten zu Drehfeldmagnetmotoren

8-polig 400V-50Hz IC 410 (unbelüftet) und IC 416 (fremdbelüftet) Drehmomenttoleranz ±10%

Wärmeklasse: F 750 min⁻¹

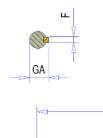
Тур		Stillsta	ndsmon	nent M	_{ST} (Nm)			I _K bei 4	00V	(A)		J_M	Gev	wicht
		IC 410)		IC 416			IC 410)		IC 4	16		IC410	IC416
	S1	S3	S3	S1	S3	S3	S1	S3	S3	S1	S3	S3		C	a.
		40%	25%		40%	25%		40%	25%		40%	25%	kgm²	ŀ	κg
RDM 63L/8	0,55					5,1	0,2	0,35	0,65	0,6	1,0	1,8	0,00033	5	7
RDM 71L/8	1,0	1,5	3,0	2,8	4,2	8,4	0,3	0,5	1,0	0,8	1,3	2,6	0,00094	7	9,5
RDM 80L/8	1,5	2,4	4,5	6,0	8,5	18	0,4	0,7	1,4	1,5	2,5	5,5	0,0024	10	12,5
RDM 90L/8	2,2	3,6	6,6	9,0	14	27	0,7	1,2	2,1	2,4	4,5	10	0,0042	15	18
RDM 100L/80	3,0	4,8	8,5	11	17	33	0,8	1,4	2,3	3,2	5,8	11,5	0,0083	22	25
RDM 112M/8	3,8	6,0	11	14	21	50	1,0	1,8	2,7	4,2	7,5	14,5	0,0159	31	34
RDM 132M/8								au	f Anfraç	ge					

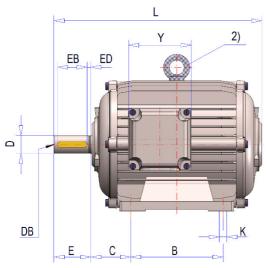
Änderung vorbehalten

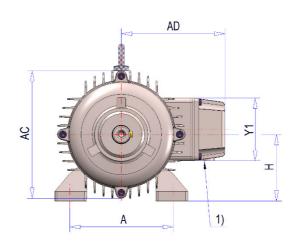
12-polig 400V-50Hz IC 410 (unbelüftet) und IC 416 (fremdbelüftet)

Drehmomenttoleranz ±10%

Wärmeklasse: F 500 min⁻¹


Тур		Stillsta	ındsmoı	ment M	_{ST} (Nm)				I _K bei 4	100V (۹)		J_{M}	Gew	vicht
		IC 410)		IC 416			IC 410)		IC 41	6		IC410	IC416
	S1	S3	S3	S1	S3	S3	S1	S3	S3	S1	S3	S3		Ca	a.
		40%	25%		40%	25%		40%	25%		40%	25%	kgm²	k	g
RDM 63L/12	0,6	1,0	1,8	2,0	3,2	6,0	0,2	0,3	0,6	0,6	1,0	1,8	0,00033	5	7
RDM 71K/12	0,85	1,35	2,5	2,4	3,5	7,2	0,25	0,4	0,8	0,6	1,5	3	0,00080	6	8,5
RDM 71L/12	1,2	2,0	3,6	4,0	6,5	12	0,3	0,5	1,0	0,95	1,9	4,7	000094	7	9,5
RDM 80K/12	1,5	2,8	4,5	6,0	10	18	0,4	0,6	1,2	1,25	2,1	5,5	0,0019	9	11,5
RDM 80L/12	2,0	3,2	6,0	8,0	13	24	0,40	0,75	1,4	1,6	3,0	7,2	0,0024	10	12,5
RDM 90L/12	2,5	4,0	7,5	10	17	30	0,45	0,9	1,9	2,0	4,1	8,5	0,0042	15	18
RDM 100L/12	3,2	5,2	10	12	19	36	0,50	1,2	2,2	1,9	4,8	9,5	0,0083	22	25
RDM 112M/12	3,8	6,8	13	15	23	50	0,90	1,7	3,3	3,2	6,0	12,5	0,0159	31	34
RDM 132M/12	6,0	auf Aı	nfrage	18	auf Ar	frage	1,6	auf A	nfrage	4,7	auf A	nfrage	0,0375	52	57


Änderungen vorbehalten



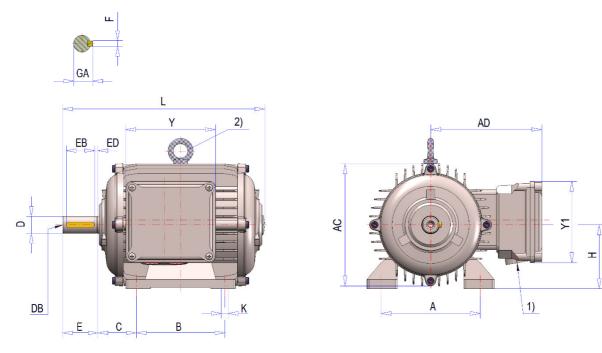
Maßblätter zu Drehfeldmagnetmotoren

Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B3

1) siehe Planungsteil (Abschnitt *Kabeleinführungen im Klemmenkasten*) Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Passungen

und

2) mit Trageöse ab Baugröße 112 Änderungen vorbehalten


Тур	В	Α	K	Н	С	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
RDM 63 L	80	100	7	63	40	11	23	M4	121	99	70	70	12,5	4	18	2,5	181
RDM 71 K/L	90	112	7	71	45	14	30	M5	138	109	70	70	16	5	25	2,5	207
RDM 80 K/L	100	125	9,5	80	50	19	40	M6	156	127	85	85	21,5	6	32	4	237
RDM 90 S	100	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	259
RDM 90 L	125	140	10	90	56	24	50	M8	176	140	85	85	27	8	40	5	284
RDM 100 L	140	160	11,2	100	63	28	60	M10	194	148	85	85	31	8	50	5	323
RDM 112 M	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	336
RDM 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	395
RDM 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	432

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

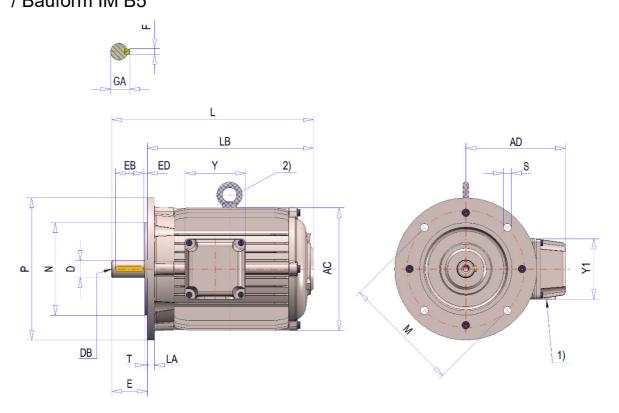
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: ≥IP 56 /

Bauform IM B3

1) siehe Planungsteil (Abschnitt *Kabeleinführungen im Klemmenkasten*) Toleranzen (*Abschnitt Passungen und Toleranzen*) Passungen u

und

2) mit Trageöse ab Baugröße 112


Änderungen vorbehalten

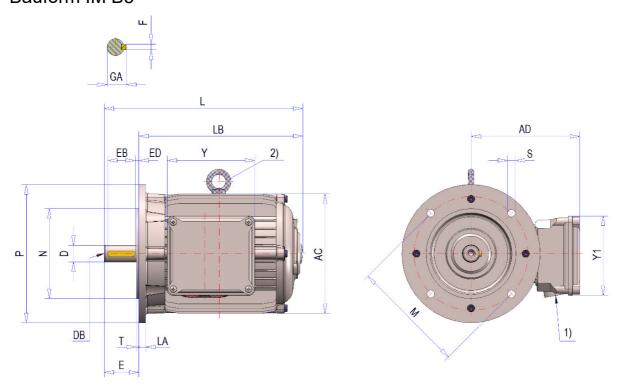
Тур	В	Α	K	Н	С	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
RDM 63 L	80	100	7	63	40	11	23	M4	121	121	117	103	12,5	4	18	2,5	185
RDM 71 K/L	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	211
RDM 80 K/L	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	241
RDM 90 S	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	263
RDM 90 L	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	288
RDM 100 L	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	327
RDM 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	340
RDM 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	399
RDM 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	436

 $^{^{\}ast}$ Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 ($Abschnitt\ Bauformen$)

Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B5

1) siehe Planungsteil (Abschnitt *Kabeleinführungen im Klemmenkasten*) Toleranzen (*Abschnitt Passungen und Toleranzen*) Passungen

und


2) mit Trageöse ab Baugröße 112 Änderungen vorbehalten

Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
RDMF 63 L	11	23	M4	117	104	70	70	12,5	4	18	2,5	181	156	9	115	95	140	3	10
RDMF 71 K/L	14	30	M5	134	114	70	70	16	5	25	2,5	207	177	9	130	110	160	3,5	10
RDMF 80 K/L	19	40	M6	151	134	85	85	21,5	6	32	4	237	197	11	165	130	200	3,5	10
RDMF 90 S	24	50	M8	169	137	85	85	27	8	40	5	259	209	11	165	130	200	3,5	10
RDMF 90 L	24	50	M8	169	137	85	85	27	8	40	5	284	234	11	165	130	200	3,5	10
RDMF 100 L	28	60	M10	187	148	85	85	31	8	50	5	323	263	14	215	180	250	4	14
RDMF 112 M	28	60	M10	208	158	85	85	31	8	50	5	336	276	14	215	180	250	4	13
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	395	315	14	265	230	300	4	11,5
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	432	352	14	265	230	300	4	11,5

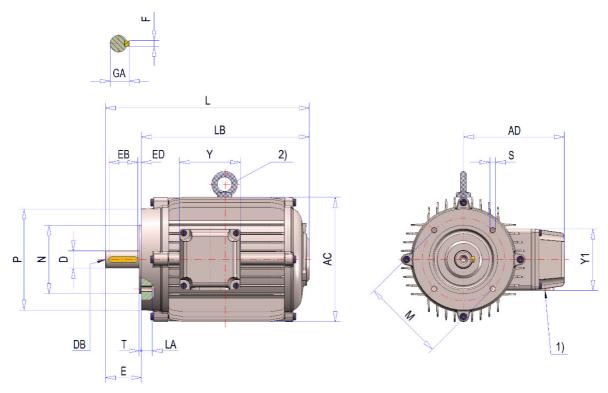
^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: ≥IP 56 / Bauform IM B5

1) siehe Planungsteil (Abschnitt *Kabeleinführungen im Klemmenkasten*) Toleranzen (*Abschnitt Passungen und Toleranzen*) Passungen

und

2) mit Trageöse ab Baugröße 112 Änderungen vorbehalten


Тур	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA
RDMF 63 L	11	23	M4	117	126	117	103	12,5	4	18	2,5	185	160	9	115	95	140	3	10
RDMF 71 K/L	14	30	M5	134	136	117	103	16	5	25	2,5	211	181	9	130	110	160	3,5	10
RDMF 80 K/L	19	40	M6	151	150	127	115	21,5	6	32	4	241	201	11	165	130	200	3,5	10
RDMF 90 S	24	50	M8	169	154	127	115	27	8	40	5	263	213	11	165	130	200	3,5	10
RDMF 90 L	24	50	M8	169	154	127	115	27	8	40	5	288	238	11	165	130	200	3,5	10
RDMF 100 L	28	60	M10	187	165	127	115	31	8	50	5	327	267	14	215	180	250	4	14
RDMF 112 M	28	60	M10	208	175	127	115	31	8	50	5	340	280	14	215	180	250	4	13
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	399	319	14	265	230	300	4	11,5
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	436	356	14	265	230	300	4	11,5

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

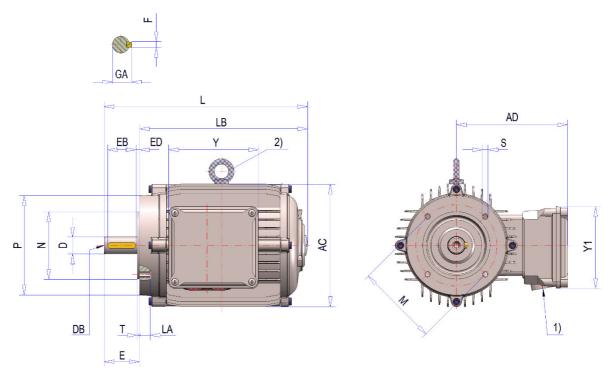
Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: IP 54 – IP 55

/ Bauform IM B14

1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten) Toleranzen (Abschnitt Passungen und Toleranzen)

Passungen und

2) mit Trageöse ab Baugröße 112 Änderungen vorbehalten


Тур	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RDMF 63 L	11	23	M4	117	104	70	70	12,5	4	18	2,5	181	156	M5	75	60	90	2,5	9,5
RDMF 71 K/L	14	30	M5	134	114	70	70	16	5	25	2,5	207	177	M6	85	70	105	2,5	10
RDMF 80 K/L	19	40	M6	151	134	85	85	21,5	6	32	4	237	197	M6	100	80	120	3	12,5
RDMF 90 S	24	50	M8	169	137	85	85	27	8	40	5	259	209	M8	115	95	140	3	15
RDMF 90 L	24	50	M8	169	137	85	85	27	8	40	5	284	234	M8	115	95	140	3	15
RDMF 100 L	28	60	M10	187	148	85	85	31	8	50	5	323	263	M8	130	110	160	3,5	12,5
RDMF 112 M	28	60	M10	208	158	85	85	31	8	50	5	336	276	M8	130	110	160	3,5	16
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	395	315	M10	165	130	200	3,5	15
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	432	352	M10	165	130	200	3,5	15

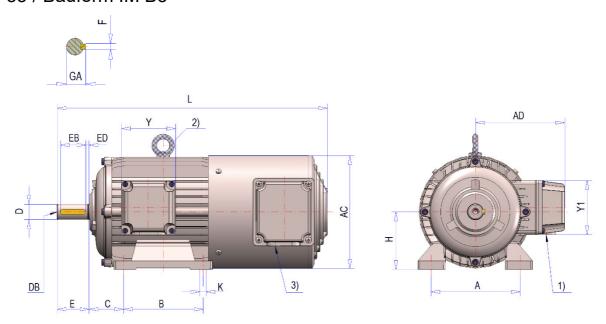
^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 132 / Kühlart: IC410 unbelüftet / Schutzart: ≥IP 56 /

Bauform IM B14

1) siehe Planungsteil (Abschnitt *Kabeleinführungen im Klemmenkasten*) Toleranzen (*Abschnitt Passungen und Toleranzen*) Passungen

und


2) mit Trageöse ab Baugröße 112 Änderungen vorbehalten

Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RDMF 63 L	11	23	M4	117	126	117	103	12,5	4	18	2,5	185	160	M5	75	60	90	2,5	9,5
RDMF 71 K/L	14	30	M5	134	136	117	103	16	5	25	2,5	211	181	M6	85	70	105	2,5	10
RDMF 80 K/L	19	40	M6	151	150	127	115	21,5	6	32	4	241	201	M6	100	80	120	3	12,5
RDMF 90 S	24	50	M8	169	154	127	115	27	8	40	5	263	213	M8	115	95	140	3	15
RDMF 90 L	24	50	M8	169	154	127	115	27	8	40	5	288	238	M8	115	95	140	3	15
RDMF 100 L	28	60	M10	187	165	127	115	31	8	50	5	327	267	M8	130	110	160	3,5	12,5
RDMF 112 M	28	60	M10	208	175	127	115	31	8	50	5	340	280	M8	130	110	160	3,5	16
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	399	319	M10	165	130	200	3,5	15
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	436	356	M10	165	130	200	3,5	15

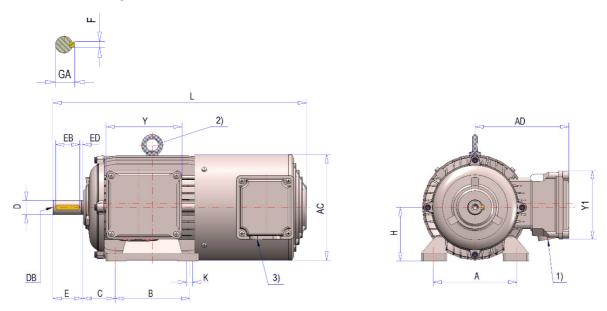
^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten


Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	Г
RDM 63 L	80	100	7	63	40	11	23	M4	124	99	70	70	12,5	4	18	2,5	309
RDM 71 K/L	90	112	7	71	45	14	30	M5	139	109	70	70	16	5	25	2,5	337
RDM 80 K/L	100	125	9,5	80	50	19	40	M6	157	127	85	85	21,5	6	32	4	367
RDM 90 S	100	140	10	90	56	24	50	M8	177	140	85	85	27	8	40	5	402
RDM 90 L	125	140	10	90	56	24	50	M8	177	140	85	85	27	8	40	5	427
RDM 100 L	140	160	11,2	100	63	28	60	M10	195	149	85	85	31	8	50	5	465
RDM 112 M	140	190	11,2	112	70	28	60	M10	218	161	85	85	31	8	50	5	483
RDM 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	578
RDM 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	616

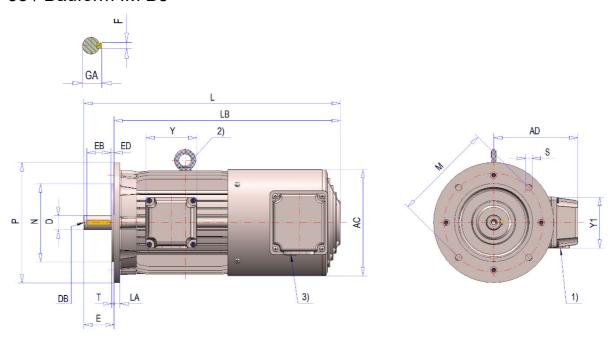
^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 56 /

Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen siehe (Abschnitt Passungen und Toleranzen)

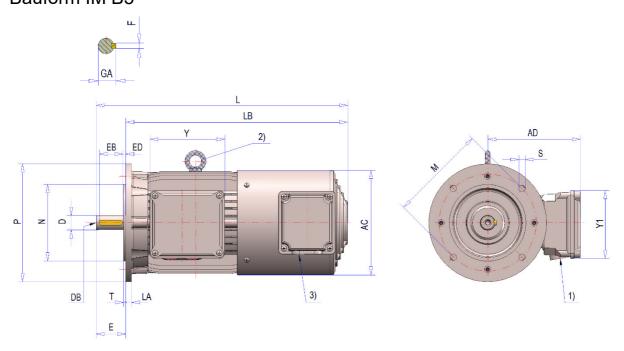

Änderungen vorbehalten

Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
RDM 63 L	80	100	7	63	40	11	23	M4	124	121	117	103	12,5	4	18	2,5	309
RDM 71 K/L	90	112	7	71	45	14	30	M5	139	130	117	103	16	5	25	2,5	337
RDM 80 K/L	100	125	9,5	80	50	19	40	M6	157	144	127	115	21,5	6	32	4	367
RDM 90 S	100	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	402
RDM 90 L	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	427
RDM 100 L	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	465
RDM 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	483
RDM 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	578
RDM 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	616

^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5


Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

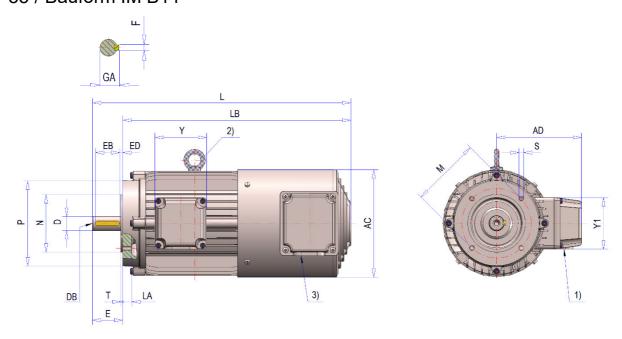
Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
RDMF 63 L	11	23	M4	124	104	70	70	12,5	4	18	2,5	309	286	9	115	95	140	3	10
RDMF 71 K/L	14	30	M5	139	114	70	70	16	5	25	2,5	337	307	9	130	110	160	3,5	9,5
RDMF 80 K/L	19	40	M6	157	134	85	85	21,5	6	32	4	367	327	11	165	130	200	3,5	11
RDMF 90 S	24	50	M8	177	137	85	85	27	8	40	5	402	352	11	165	130	200	3,5	10,5
RDMF 90 L	24	50	M8	177	137	85	85	27	8	40	5	427	377	11	165	130	200	3,5	10,5
RDMF 100 L	28	60	M10	195	148	85	85	31	8	50	5	465	405	14	215	180	250	4	15,5
RDMF 112 M	28	60	M10	218	158	85	85	31	8	50	5	483	423	14	215	180	250	4	11
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	14	265	230	300	4	12
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	14	265	230	300	4	12

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 56 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

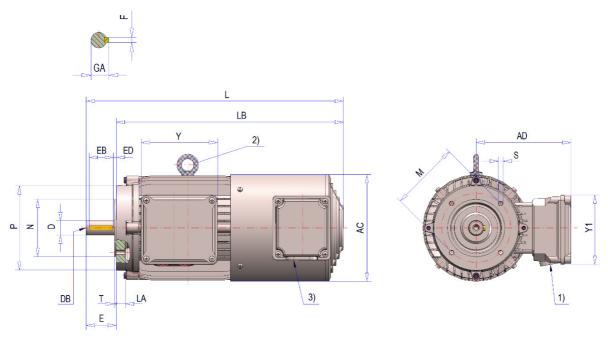
Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RDMF 63 L	11	23	M4	124	126	117	103	12,5	4	18	2,5	309	286	9	115	95	140	3	10
RDMF 71 K/L	14	30	M5	139	136	117	103	16	5	25	2,5	337	307	9	130	110	160	3,5	9,5
RDMF 80 K/L	19	40	M6	157	150	127	115	21,5	6	32	4	367	327	11	165	130	200	3,5	11
RDMF 90 S	24	50	M8	177	154	127	115	27	8	40	5	402	352	11	165	130	200	3,5	10,5
RDMF 90 L	24	50	M8	177	154	127	115	27	8	40	5	427	377	11	165	130	200	3,5	10,5
RDMF 100 L	28	60	M10	195	165	127	115	31	8	50	5	465	405	14	215	180	250	4	15
RDMF 112 M	28	60	M10	218	175	127	115	31	8	50	5	483	423	14	215	180	250	4	11
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	14	265	230	300	4	12
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	14	265	230	300	4	12

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: IP 54 – IP 55 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

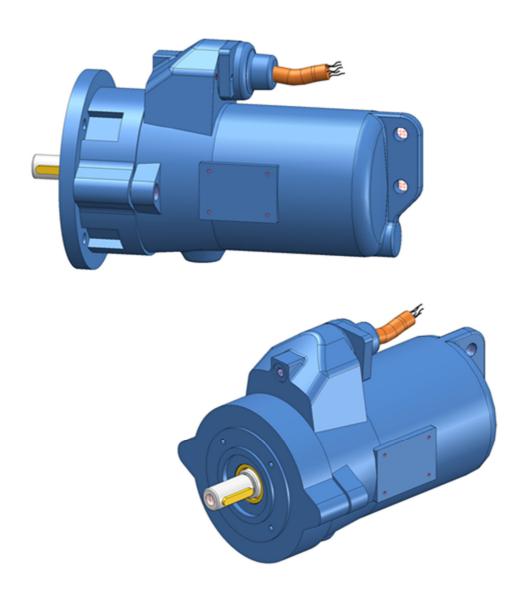
Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten


Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RDMF 63 L	11	23	M4	124	104	70	70	12,5	4	18	2,5	309	286	M5	75	60	90	2,5	9,5
RDMF 71 K/L	14	30	M5	139	114	70	70	16	5	25	2,5	337	307	M6	85	70	105	2,5	10
RDMF 80 K/L	19	40	M6	157	134	85	85	21,5	6	32	4	367	327	M6	100	80	120	3	12,5
RDMF 90 S	24	50	M8	177	137	85	85	27	8	40	5	402	352	M8	115	95	140	3	15
RDMF 90 L	24	50	M8	177	137	85	85	27	8	40	5	427	377	M8	115	95	140	3	15
RDMF 100 L	28	60	M10	195	148	85	85	31	8	50	5	465	405	M8	130	110	160	3,5	12,5
RDMF 112 M	28	60	M10	218	158	85	85	31	8	50	5	483	423	M8	130	110	160	3,5	16
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	M10	165	130	200	3,5	15
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	M10	165	130	200	3,5	15

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 132 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 56 /

Bauform IM B14


- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5

Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
RDMF 63 L	11	23	M4	124	126	117	103	12,5	4	18	2,5	309	286	M5	75	60	90	2,5	9,5
RDMF 71 K/L	14	30	M5	139	136	117	103	16	5	25	2,5	337	307	M6	85	70	105	2,5	10
RDMF 80 K/L	19	40	M6	157	150	127	115	21,5	6	32	4	367	327	M6	100	80	120	3	12,5
RDMF 90 S	24	50	M8	177	154	127	115	27	8	40	5	402	352	M8	115	95	140	3	15
RDMF 90 L	24	50	M8	177	154	127	115	27	8	40	5	427	377	M8	115	95	140	3	15
RDMF 100 L	28	60	M10	195	165	127	115	31	8	50	5	465	405	M8	130	110	160	3,5	12,5
RDMF 112 M	28	60	M10	218	175	127	115	31	8	50	5	483	423	M8	130	110	160	3,5	16
RDMF 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	M10	165	130	200	3,5	15
RDMF 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	M10	165	130	200	3,5	15

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Tauchmotoren

Die HEW-Tauchmotoren sind speziell für den Einsatz unter Wasser konzipiert. Drehstromtauchmotoren werden u.a. eingesetzt zum Fördern von Schmutzwasser, Abwasser, Fluss-, Regenwasser und allen Arten von schlammhaltigen Wassern sowie für Rührwerke zum Mischen und Homogenisieren. Als Gehäuse wird ein optimiertes Motor-Topfgehäuse aus Grauguss mit weniger Ecken und Kanten verwendet. Aufgrund der robusten Konstruktion ist der Antrieb sehr langlebig. Ein vorkonfektioniertes Motorkabel wird zum Motor hin vergossen und erlaubt einen problemlosen Anschluss vor Ort. Die Tauchmotoren sind in Schutzart IP 68 ausgeführt und werden vorwiegend in Nassaufstellung bis zu einer Eintauchtiefe von 10 m eingesetzt. Die Motoren sind für den direkten Anbau an den Antrieb (z.B. Getriebe, Rührwerk oder Pumpe) ausgelegt.

Die Wicklung ist mit Phasenisolation ausgerüstet, wodurch die Antriebe für den Betrieb am Frequenzumformer geeignet sind. Verfügbar sind diese Antriebe im Leistungsbereich von 1,1 kW bis 5,5 kW. Auf Anfrage können auch Motoren im Leistungsbereich bis 30,0 KW geliefert werden. Standardmäßig werden die Antriebe als 4-polige Variante gefertigt. Andere Polzahlen oder polumschaltbaren Motoren sind auf Anfrage ebenfalls lieferbar.

Als Sonderausführung können die Motoren mit einem geschlossenen Bremssystem oder einer Stillstandsheizung geliefert werden. Weitere Sonderausführungen sind auf Anfrage erhältlich.

Normen und Vorschriften

Die Motoren entsprechen den einschlägigen Normen und Vorschriften (siehe Abschnitt Normen und Vorschriften)

Gehäuseausführung

Die Flansche und Gehäusebauteile sind aus Grauguss, alle Verbindungselemente wie Schrauben und Befestigungselemente sind aus rost- und säurebeständigen Werkstoffen ausgeführt.

Wellenende

Die Wellenenden der Standardausführung sind zylindrisch und entsprechen in ihren Abmessungen, Toleranzen und ihrer Zuordnung zu den Leistungen der DIN EN 50347. Die Toleranz für den Wellendurchmesser ist bis zum Durchmesser 50 mm k6 (ISO) / über Durchmesser 50 mm m6 (ISO). Bei allen Tauchmotoren ist das DS-Wellenende mit einer Zentrierbohrung nach DIN 332-2 Form D versehen. Die Passfedern sind nach DIN 6885-1 Form A ausgeführt und werden stets mit den Motoren geliefert.

In der Normalausführung werden die Motoren mit einem Wellenende aus Werkstoff 1.4021 (rost- und säurebeständig) geliefert. Auf Kundenwunsch können auch andere Werkstoffe eingesetzt werden. Motoren mit Sonderwellen (z.B. Getriebedirektanbau) sind ebenfalls optional lieferbar.

Schwingungen

Alle Läufer der Motoren sind mit halber Passfeder dynamisch gewuchtet nach DIN ISO 21940-32. Das Schwingverhalten der Motoren entspricht der Schwinggrößenstufe A nach DIN EN 60034-14 (siehe Abschnitt Schwingungen). Für erhöhte Laufruhe kann die Schwinggrößenstufe B auf Anfrage geliefert werden.

Lagerung

Die Motoren sind mit großzügig dimensionierten Wälzlagern ausgerüstet. Das DS-Lager ist als Festlager ausgelegt. Das NS-Lager ist als Loslager ausgeführt und wird durch Federn angestellt.

Datum: 10.06.2025 Version: 2.6

Wellenabdichtung

Die Wellenabdichtung zum Motorinneren erfolgt durch einen Radialdichtring. Diese Abdichtung entspricht der Ausführung "öldicht" Schutzart IP 67.

Leckageüberwachung

Zur Überwachung des Dichtungssystems kann auf Kundenwusch eine Leckageüberwachung eingebaut werden. Die Messleitung zu den Elektroden ist im Anschlusskabel integriert. Die Auswertung erfolgt über eine Widerstandsmessung durch entsprechende Elektronikkomponenten. Das Auswertegerät gehört nicht zum Lieferumfang.

Elektrische Ausführung

Die in der Liste angegebenen Leistungen beziehen sich auf voll eingetauchte Aggregate mit einer maximalen Kühlmitteltemperatur von 40 °C bei Betriebsart S1 (Dauerbetrieb).

Bemessungsspannung und Frequenz

Die Tauchmotoren werden für folgende Bemessungsspannungen geliefert:

3AC, 50 Hz - 400 V, 500 V, 690 V

3AC, 60 Hz - 440 V, 460 V

Spannungstoleranz ±10%, nach EN 60034 Teil 1 – Bereich B

Andere Bemessungsspannungen sind auf Kundenwunsch lieferbar.

Wärmeklasse

In der Normalausführung sind die Motoren in Wärmeklasse F ausgeführt. Optional können die Motoren auch in Wärmeklasse H ausgeführt werden. Ein verstärkter Feuchtschutz ist ebenfalls als Option lieferbar.

Motoranschluss

Der Motoranschluss erfolgt über wasserdicht ausgeführte, feuchtigkeitsbeständige Gummischlauchleitungen. Die Länge der Anschlussleitung beträgt in der Standardausführung 15 Meter.

Bei stromabhängigem Motorschutz muss der Schutzschalter auf den am Leistungsschild angegebenen Nennstrom eingestellt werden. Bei Schalthäufigkeit, Kurzzeitbetrieb, Kühlmittelausfall (Trockenlauf) oder großen Temperaturschwankungen ist der Motorschutz nur mit direkter Temperaturüberwachung sicher wirksam. Hierzu bieten sich auf Wunsch folgende Möglichkeit an:

Temperaturschalter als Öffner (PTO)

Nach Überschreiten der der Wärmeklasse entsprechenden Temperatur, öffnet der Thermoschalter den Kontakt und schließt diesen erst nach wesentlicher Temperaturreduzierung wieder.

Schaltleistung: Bei Wechselspannung 250 V 1,6 A.

Die Anschlüsse der Temperaturüberwachung sind standardmäßig im Anschlusskabel integriert.

Optional können die Motoren auch mit Kaltleiter (PTC) ausgerüstet werden, bei dieser Ausführung muss zwingend ein Motorkabel in geschirmter Ausführung eingesetzt werden.

Stillstandsheizung

Bei Motoren, für die infolge der klimatischen Verhältnisse die Gefahr einer Betauung der Wicklung besteht, z.B. Motoren, die starken Temperaturschwankungen ausgesetzt sind, kann eine Stillstandsheizung vorgesehen werden.

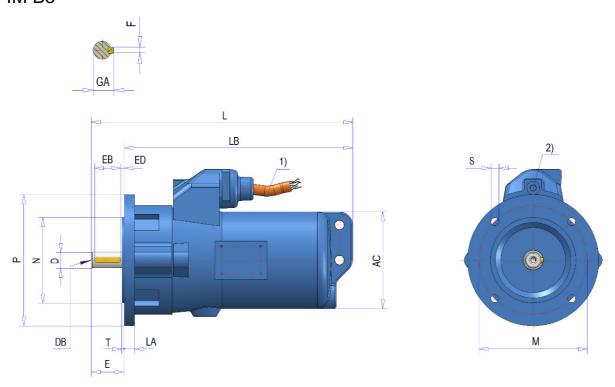
Damit wird die Luft im Motor über die Außentemperatur erwärmt und ein Feuchtigkeitsniederschlag im Motorinnenraum verhindert. Während des Betriebes darf die Stillstandsheizung nicht eingeschaltet sein.

Technische Daten zu Tauchmotoren

4-polig 400V-50Hz IC 410

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹

Kühlmitteltemperatur max. 40°C komplett eingetaucht


\u111111111111111111111111111111111111	comporat	ai iiiax	10 0		Kompi	ett enige	ladoni			
Baugröße	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
Тур	leistung	drehzahl	strom	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	zu-Nenn- moment	trägheits- moment	IM B5 inkl. Motorkabel
GGUF	P_N	n_N	I_N	cos φ	M_{N}	I_A/I_N	M_A/M_N	$M_{K}/M_{N} \\$	J	M
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg
90L/4	1,1	1440	2,45	0,78	7,3	5,8	2,6	2,9	0,0024	25
90L/4	1,5	1430	3,35	0,78	10	5,1	2,3	2,6	0,0024	25
90L/4	2,2	1420	5,37	0,73	14,8	4,9	2,2	2,5	0,0024	25
112M/4	3,0	1450	5,9	0,84	19,7	6,0	2,25	2,8	0,0101	52
112M/4	3,3	1450	6,65	0,84	21,8	5,5	2,2	2,6	0,0101	52
112M/4	4,0	1450	8,35	0,79	26,3	6,2	2,3	2,9	0,0101	52
112M/4	4,4	1445	9,0	0,81	29	5,6	2,1	2,7	0,0101	52
112M/4	5,5	1440	11,9	0,77	36,5	5,5	2,0	2,6	0,0101	52

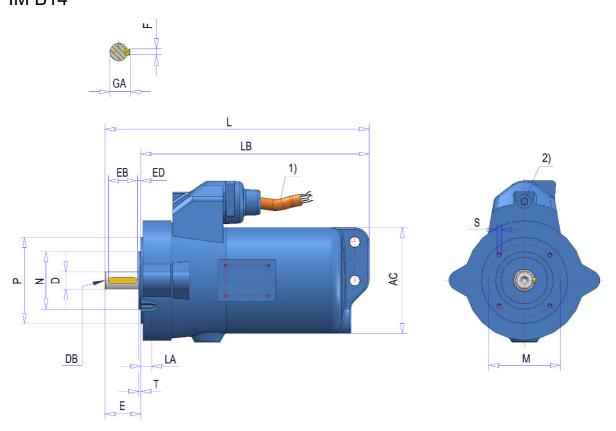
Änderungen vorbehalten

Maßblätter zu Tauchmotoren

Baugröße: 90 – 112 / Kühlart: IC410 unbelüftet / Schutzart: IP 68 / Bauform IM B5

- 1) Kabellänge GGUF 90 L = 15 m / GGUF 112 M = 20 m (andere Längen auf Anfrage)
- 2) optional Gewinde R1/8" für Leckageüberwachung

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

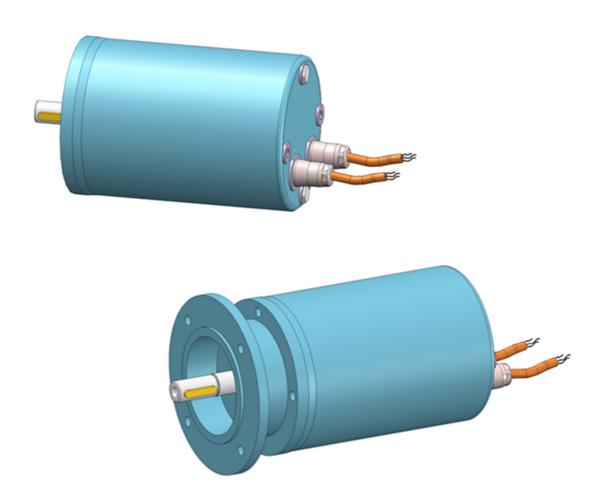

Änderungen vorbehalten

Тур	D	E	DB	AC	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
GGUF 90 L	24	50	M8	147	27	8	40	5	398	348	12	165	130	200	3,5	16
GGUF 90 L	28	60	M10	147	31	8	50	5	378	318	14	215	180	250	4	16
GGUF 112 M	28	60	M10	184	31	8	60	5	431	371	14	215	180	250	4	14
GGUF 112 M	38	80	M12	184	41	10	70	5	451	371	14	265	230	300	4	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 90 – 112 / Kühlart: IC410 unbelüftet / Schutzart: IP 68 / Bauform IM B14

- 1) Kabellänge GGUF 90 L = 15 m / GGUF 112 M = 20 m (andere Längen auf Anfrage)
- 2) optional Gewinde R1/8" für Leckageüberwachung


Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten

Тур	D	E	DB	AC	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
GGUF 90 L	24	50	M8	147	27	8	40	5	368	318	M8	115	95	140	3	16
GGUF 90 L	28	60	M10	147	31	8	50	5	378	318	M8	130	110	160	3	16
GGUF 112 M	28	60	M10	184	31	8	50	5	490	430	M8	130	110	160	3	16
GGUF 112 M	38	80	M12	184	41	10	70	5	510	430	M10	165	130	200	3	16

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (*Abschnitt Bauformen*)

Vor allem in den sensiblen Produktionsbereichen der Lebensmitteltechnologie, also bei der Herstellung und Verarbeitung von Nahrungsmitteln und Getränken, werden höchste Anforderungen an die hygienischen Bedingungen gestellt. Dies gilt gleichermaßen für die Produktion in der chemischen und pharmazeutischen Industrie. Hier sind oftmals sogar sterile Produktionsumgebungen gefordert.

Die Beschaffenheit herkömmlicher Motoren stellte die Planer solcher Produktionsanlagen bislang vor Probleme, verfügen diese Motoren doch in der Regel über Kühlrippen und Lüfter, in denen sich Schmutz ansammeln kann. Aufgrund der schlechten Zugänglichkeit wird die Sauberhaltung erschwert. Die Gefahr einer Keimbildung ist die Folge! Darüber hinaus wurden in der Vergangenheit die Reinigungsvorgänge der Produktionsanlagen auf Grund dieser Beschaffenheit erschwert.

Diese Problematik wird jetzt durch die HEW-Hygienemotoren behoben. Bei den Spezial-Motoren der Firma HEW werden die Gehäuse als rundum glatte, geschlossene Oberflächen konzipiert, die keinerlei Kanten, Vertiefungen oder Rillen aufweisen. Somit sind sie sehr leicht zu reinigen und verringern eine Keim- und Bakterienbildung an ihrer Oberfläche. Die Ausführung erfolgt wahlweise in rostfreiem V2A-Edelstahl oder in Aluminium. Die Motoren der Edelstahlreihe sind sowohl in unbelüfteter Ausführung (IC410 TENV Totally Enclosed Non Ventilated) sowie flüssigkeitsgekühlter Ausführung (IC 3S7 TELC Totaly Enclosed Liquid Cooled) lieferbar. Der elektrische Anschluss sowie die Anschlüsse für Zu- und Ablauf der Flüssigkeitskühlung werden gegenüber der Antriebsseite ausgeführt. Weiterführende Hinweise zur eingesetzten Kühlflüssigkeit sind der entsprechenden Wartungs- und Betriebsanleitung zu entnehmen.

Technische Ausführung

- glatte Oberfläche
- Bei Flüssigkeitskühlung geringe Oberflächentemperatur < 60°C
- ohne Lüfter, reine Konvektionskühlung oder Flüssigkeitskühlung
- Gehäuseausführung wahlweise in V2A oder Aluminium
- Motorleistungen von 0,18kW 2,2 kW
- Motorschutzart IP66
- Motorschutz wahlweise Kaltleiter oder Thermoschalter
- Reibarmer Wellendichtring aus PTFE im Hygienic Design
- Optional Drehgeber für Umrichterbetrieb
- Anschluss wahlweise über Motorkabel oder IP66 Steckverbinder
- Wellenende aus Edelstahl, andere Werkstoffe auf Anfrage lieferbar
- Motoren mit Motorwellen in Sonderabmessung (Getriebedirektanbau) sind auf Anfrage lieferbar

Hygiene-Motoren von HEW bieten einen optimalen Schutz gegen:

- Feuchtigkeit
- Reinigungsmittel
- Öle
- Schmutz
- Chemikalien
- Bakterien
- Temperaturschwankungen
- Strahlwasser

Die elektrischen Daten sowie die Maßblätter der Hygiene-Motoren in Aluminium-Ausführung erhalten Sie auf Anfrage.

Datum: 10.06.2025 Version: 2.6

Hygiene-Motoren

Technische Daten zu Hygiene-Motoren

4-polig 400V-50Hz IC 410 (unbelüftet)

Wärmeklasse: F / Betriebsart: S1 / Synchrone Drehzahl: 1500 min-1 / Gehäusematerial: V2A

Belüftung: unbelüftet IC410 TENV Totally Enclosed Non Ventilated)												
Baugröße	Nenn-	Nenn-	Nenn-	Leistungs-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht		
Тур	leistung	drehzahl	strom	faktor	moment	zu-Nenn- strom	zu-Nenn- moment	zu-Nenn- moment	trägheits- moment	IM B5		
GUF	P_N	n_N	I_N	cos φ	M_N	I_A/I_N	M_A/M_N	M_K/M_N	J	М		
	kW	min ⁻¹	Α		Nm				kgm²	ca. kg		
71L/4	0,12			auf Anfrage								
90S/4	0,18	1440	0,45	0,77	1,2	6,0	2,9	3,5	0,00205	19,4		
90\$/4	0,25	1460	0,80	0,62	1,7	7,2	4,7	7,3	0,00243	20,3		
90S/4	0,37	1450	0,90	0,72	2,45	6,8	3,5	3,9	0,00243	20,3		
90L/4	0,55	1400	1,3	0,85	3,8	4,35	1,9	2,9	0,00243	20,3		

Änderungen vorbehalten

4-polig 400V-50Hz IC 3S7 (flüssigkeitsgekühlt)

Wärmeklasse: F / Betriebsart: S1 / Synchrone Drehzahl: 1500 min-1 / Gehäusematerial: V2A

Flüssigkeitsgekühlte Hygiene-Motoren müssen ab dem 01. Juli 2021 gemäß VERORDNUNG (EU) 2019/1781 DER KOMMISSION vom 1. Oktober 2019 in einem Kühlmitteltemperaturbereich von 0°C bis 32°C folgende Wirkungsgradklassen aufweisen:

IE2: 0,12kW bis < 0,75kW

IE3: 0,75kW bis ≤ 1000kW

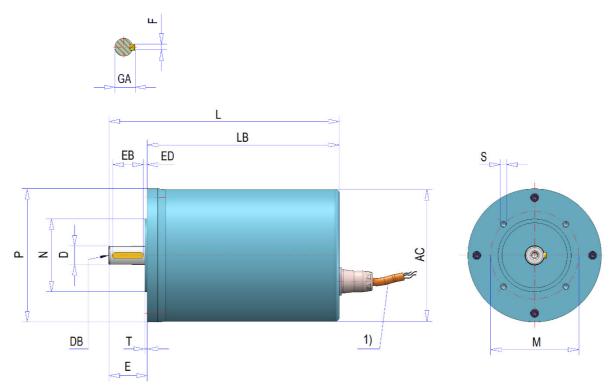
Bitte sprechen Sie uns im Bedarfsfall an.

Maßblätter zu Hygiene-Motoren

Baugröße: 71 – 90 / Kühlart: IC410 unbelüftet / Schutzart: IP 66 – IP 68 /

Bauform IM B5

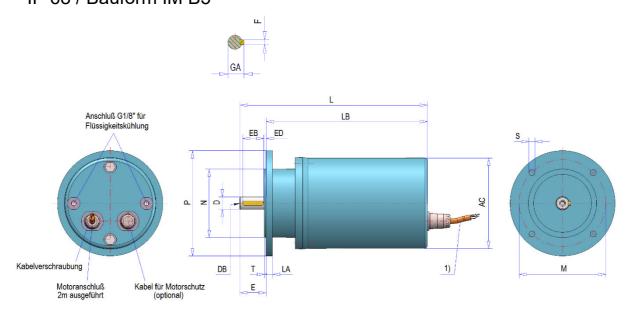
1) Standard 2 m Kabel (andere Längen auf Anfrage)
Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*)
Bei Motorschutz (Kaltleiter / Thermo) ein 2. Kabel in gleicher Länge
Änderungen vorbehalten


Тур	D	Е	DB	AC	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
GUF 71K/L	11	23	M4	143	12,5	4	18	2,5	287	264	9	115	95	140	3,5	14
GUF 71K/L	14	30	M5	143	16	5	25	2,5	294	264	9	130	110	160	3,5	14
GUF 71K/L	19	40	M6	143	21,5	6	32	4	304	264	11	165	130	200	3,5	14
GUF 90S/L	11	23	M4	172	12,5	4	18	2,5	329	308	9	115	95	140	3,5	12
GUF 90S/L	14	30	M5	172	16	5	25	2,5	336	308	9	130	110	160	3,5	12
GUF 90S/L	19	40	M6	172	21,5	6	32	4	346	308	11	165	130	200	3,5	12
GUF 90S/L	24	50	M8	172	27	8	40	5	356	306	11	165	130	200	3,5	12
GUF 90S/L	28	60	M10	172	31	8	50	5	366	306	14	215	180	250	3,5	12

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 71 – 90 / Kühlart: IC410 unbelüftet / Schutzart: IP 66 – IP 68 /

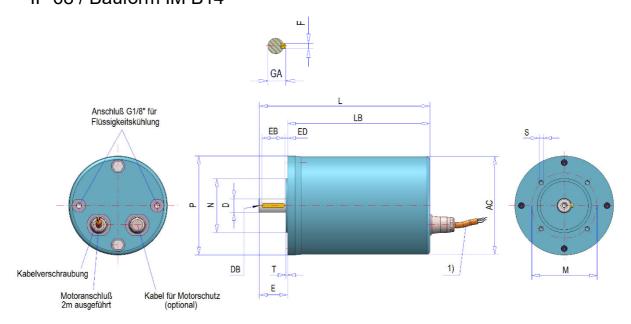
Bauform IM B14


1) Standard 2 m Kabel (andere Längen auf Anfrage) Bei Motorschutz (Kaltleiter / Thermo) ein 2. Kabel in gleicher Länge Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур	D	E	DB	AC	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
GUF 71 K/L	11	23	M4	143	12,5	4	18	2,5	229	206	M5	75	60	90	3	15
GUF 71 K/L	14	30	M5	143	16	5	25	2,5	236	206	M6	85	70	105	3	15
GUF 71 K/L	19	40	M6	143	21,5	6	32	4	246	206	M6	100	80	120	3	15
GUF 90 S/L	11	23	M4	172	12,5	4	18	2,5	294	271	M5	75	60	90	2,5	15
GUF 90 S/L	14	30	M5	172	16	5	25	2,5	301	271	M6	85	70	105	2,5	15
GUF 90 S/L	19	40	M6	172	21,5	6	32	4	291	251	M6	100	80	120	3	12
GUF 90 S/L	24	50	M8	172	27	8	40	5	301	251	M8	115	95	140	3	15
GUF 90 S/L	28	60	M10	172	31	8	50	5	311	251	M8	130	110	160	3,5	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

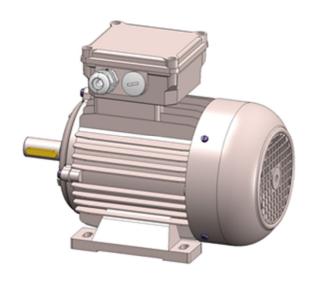
Baugröße: 71 – 90 / Kühlart: IC3S7 flüssigkeitsgekühlt / Schutzart: IP 66 – IP 68 / Bauform IM B5


1) Standard 2 m Kabel (andere Längen auf Anfrage) Bei Motorschutz (Kaltleiter / Thermo) ein 2. Kabel in gleicher Länge Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур	D	E	DB	AC	GA	F	EB	ED	L	LB	S	M	N	Р	Т	LA
GUF 71K/L	11	23	M4	143	12,5	4	18	2,5	287	264	9	115	95	140	3,5	14
GUF 71K/L	14	30	M5	143	16	5	25	2,5	294	264	9	130	110	160	3,5	14
GUF 71K/L	19	40	M6	143	21,5	6	32	4	304	264	11	165	130	200	3,5	14
GUF 90S/L	11	23	M4	172	12,5	4	18	2,5	329	308	9	115	95	140	3,5	12
GUF 90S/L	14	30	M5	172	16	5	25	2,5	336	308	9	130	110	160	3,5	12
GUF 90S/L	19	40	M6	172	21,5	6	32	4	346	308	11	165	130	200	3,5	12
GUF 90S/L	24	50	M8	172	27	8	40	5	356	306	11	165	130	200	3,5	12
GUF 90S/L	28	60	M10	172	31	8	50	5	366	306	14	215	180	250	3,5	12

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 71 – 90 / Kühlart: IC3S7 flüssigkeitsgekühlt / Schutzart: IP 66 – IP 68 / Bauform IM B14


1) Standard 2 m Kabel (andere Längen auf Anfrage) Bei Motorschutz (Kaltleiter / Thermo) ein 2. Kabel in gleicher Länge Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten


Тур	D	Е	DB	AC	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
GUF 71 K/L	11	23	M4	143	12,5	4	18	2,5	229	206	M5	75	60	90	3	15
GUF 71 K/L	14	30	M5	143	16	5	25	2,5	236	206	M6	85	70	105	3	15
GUF 71 K/L	19	40	M6	143	21,5	6	32	4	246	206	M6	100	80	120	3	15
GUF 90 S/L	11	23	M4	172	12,5	4	18	2,5	294	271	M5	75	60	90	2,5	15
GUF 90 S/L	14	30	M5	172	16	5	25	2,5	301	271	M6	85	70	105	2,5	15
GUF 90 S/L	19	40	M6	172	21,5	6	32	4	291	251	M6	100	80	120	3	12
GUF 90 S/L	24	50	M8	172	27	8	40	5	301	251	M8	115	95	140	3	15
GUF 90 S/L	28	60	M10	172	31	8	50	5	311	251	M8	130	110	160	3,5	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Ex-geschützte Motoren Baureihe R3G + R3D

Ex-geschützte **Motoren Baureihe R3G + R3D**Ex-geschützte Motoren Baureihe R3G + R3D

Speziell für Anwendungen in Ex-gefährdeten Bereichen wurden die HEW-Baureihen R3D und R3G entwickelt. Motoren der Zündschutzart II 3G Ex ec IIC T3-T4 Gc (Betriebsmittel für Zone 2) sind ausschließlich als Solomotor lieferbar, Motoren der Zündschutzart II 3D Ex tc IIIB T135°C Dc (Betriebsmittel für Zone 22) sind als Solo.- und Bremsmotor lieferbar. Die Antriebe sind in 2polige, 4polige, 6polige sowie 8 polige Ausführung lieferbar, polumschaltbare Typen sind auf Anfrage möglich. Staubgeschützte Bremsmotoren (Betriebsmittel für Zone 22) entsprechen in Ihrem Aufbau den Standardbremsmotoren der Baureihe R (siehe Bremsmotoren, mindestens Schutzart IP55). Das Magnetteil der Bremse wurde optimiert, um die Forderungen hinsichtlich Ex-Schutz zu erfüllen.

Zutreffende Zündschutzarten für elektrischer Maschinen Typ R3G + R3D

Zündschutzart Kennbuchstabe	Baubestimmung	Schutzgedanke	Anwendung bei der Art der elektrischen Maschine
Zündschutzart "ec"	DIN EN 60079-15 Betriebsmittel für Zone 2	Betriebsmäßig treten keine Funken, Lichtbögen oder unzulässige Temperaturen auf. Treten im Innern des Betriebsmittels Funken, Lichtbögen oder unzulässige Temperaturen auf, sind die Gehäuse einschließlich des Anschlusskastens in der Schutzart IP54 auszuführen, die bei einem Überdruck von 4 mbar mehr als 30 s benötigen um auf 2 mbar abzusinken (schwadensicher) oder die Gehäuse und der Anschlusskasten sind auf einfache Weise überdruckgekapselt.	Alle Motorarten z.B.: - Kurzschlußläufermotoren - Schleifringläufermotoren - Kollektormotoren usw. mit Motorschutzschalter und Überwachung des Überdruckes. Verhinderung des Austrittes der betriebsmäßig erzeugten Funken. Herstellerangaben zu diesen Maßnahmen.
Staubschutz "t"	DIN EN 60079-31 Betriebsmittel für Zone 22	Die Zündschutzart basiert auf der Begrenzung der maximalen Oberflächentemperatur des Gehäuses und auf der Einschränkung des Staubeintrittes durch die Verwendung "staubgeschützter" Gehäuse.	mit Schutz durch Gehäuse mit

Ex-geschützte **Motoren Baureihe R3G + R3D**Gas - Explosionsschutz

Zündtemperatur - Temperaturklasse

Vielfältige Faktoren, wie Größe, Gestalt, Art und Beschaffenheit der Oberfläche beeinflussen die Zündtemperatur. IEC; CENELEC und andere Normengremien haben sich auf ein in der IEC 60079-20-1 festgelegtes Verfahren zur Ermittlung der Zündtemperatur verständigt, dass dem niedrigsten und praktisch möglichen Wert sehr nahe kommt.

Danach teilt man die Gase und Dämpfe in Temperaturklassen ein. Gemäß diesen Temperaturklassen werden elektrische Betriebsmittel und andere technologische Einrichtungen in ihren Oberflächentemperaturen so ausgelegt, dass eine Oberflächentemperaturzündung ausgeschlossen ist. In den Normen sind zulässige Überschreitungen und zwingende Unterschreitungen dieser Regelwerte differenziert festgelegt.

Temperaturklasse	Zündtemperaturbereich der Mischung	Zulässige Oberflächentemperatur der elektrischen Betriebsmittel	Zulässiger Temperaturanstieg
T1	> + 450 °C	+ 400 °C	+ 410 °C
T2	> + 300≤ + 450°C	+ 300 °C	+ 260 °C
Т3	> + 200≤ + 300°C	+ 200 °C	+ 160 °C
T4	> + 135≤ + 200°C	+ 135 °C	+ 95 °C

Staub - Explosionsschutz

Oberflächentemperatur - Schutzart

Ein wesentliches Merkmal des Staubexplosionsschutzes ist die IP-Schutzart. Abhängig von den Umgebungsbedingungen werden unterschiedliche Anforderungen an die Staubdichtheit des Motors gestellt. Wichtig für den Staubexplosionsschutz ist auch die Begrenzung der Oberflächentemperatur der Motoren auf einen Wert, der unter der Zünd- und Glimmtemperatur des vorkommenden Staubes liegt.

	Vorhandensein einer explosionsfähigen	selten oder kurzzeitig	selten oder kurzzeitig
Einsatzort	Staubatmosphäre		
	Staubart	Leitend*	nicht leitend
	Zone	22	22
	Gerätegruppe	III	III
	Gerätekategorie	3D	3D
	Untergruppen	IIIC / IIIB / IIIA	IIIB / IIIA
Betriebsmittel	Schutzart	IP6X	IP5X
	Gehäusetemperatur	max. 135°C	max. 135°C
	Bescheinigung	EG-Konformitätserklärung	EG-Konformitätserklärung
		des Herstellers	des Herstellers

^{*} Die Motoren der Baureihe R3D (Zone 22) sind nicht für die Gruppe IIIC "leitender Staub" lieferbar.

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Zulässiger Einsatz von Motoren entsprechend ihrer Kennzeichnung in Abhängigkeit von der Zoneneinteilung

	Geräte- Kategorie	Zoneneinteilung	Definition nach BetrSichV	Zertifizierungs- pflicht
Gruppe	rtategorie	Für brennbare G	ase, Dämpfe und Nebel	pinone
II	1G*	0	Zone 0 umfasst Bereiche, in denen eine explosionsfähige Atmosphäre, die aus einem Gemisch von Luft und Gasen, Dämpfen oder Nebel besteht, ständig, langzeitig oder häufig vorhanden ist.	Ja
II	2G	1	Zone 1 umfasst Bereiche, in denen damit zu rechnen ist, dass eine explosionsfähige Atmosphäre aus Gasen, Dämpfen oder Nebel gelegentlich auftritt.	Ja
II	3G	2	Zone 2 umfasst Bereiche, in denen nicht damit zu rechnen ist, dass eine explosionsfähige Atmosphäre aus Gasen, Nebel oder Dämpfen austritt, aber wenn sie dennoch auftritt, dann aller Wahrscheinlichkeit nach nur selten und während eines kurzen Zeitraumes.	Nein
		Für brennbare St	äube	
II	1D*	20	Zone 20 umfasst Bereiche, in denen eine explosionsfähige Atmosphäre, die aus Staub/Luft-Gemisch besteht, ständig, langzeitlich oder häufig vorhanden ist.	Ja
II	2D	21	Zone 21 umfasst Bereiche, in denen damit zu rechnen ist, dass eine explosionsfähige Atmosphäre aus Staub/Luft-Gemischen gelegentlich auftritt.	Ja
II	3D	22	Zone 22 umfasst Bereiche, in denen nicht damit zu rechnen ist, dass eine explosionsfähige Atmosphäre durch aufgewirbelten Staub auftritt, aber wenn sie dennoch auftritt, dann aller Wahrscheinlichkeit nach nur sehr selten und während eines kurzen Zeitraumes.	Nein

^{*}für Elektromotoren nicht üblich

Aufrechterhaltung des Explosionsschutzes

Aufrechterhaltung des Explosionsschutzes während des Betriebs:

Elektrische Maschinen müssen gegen Überhitzung aufgrund von Überlastungen geschützt werden. Der Motorschutz hängt sowohl von der Betriebsart als auch von der elektrischen Maschine und deren Verwendung ab.

Die Überwachungseinrichtungen für die Motoren müssen den Anforderungen nach der Richtlinie 2014/34/EU und EN 1127-1 genügen.

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Betriebsart	Motorschutz
S1	Motorschutzschalter gemäß DIN EN 60034-1; DIN EN 60079-14
	Motorschutzschalter und als zusätzlicher Schutz Temperaturfühler in der Wicklung
S2	Motorenschutzschalter mit Einschaltzeitschalter und/oder Temperaturfühler in der Wicklung als zusätzlicher Schutz. Als Hauptschutz nur Temperaturfühler in der Wicklung (nur zulässig mit zugelassenen Steuergeräten / Auslösegeräten)
S3 - S10*	Als Hauptschutz nur Temperaturfühler in der Wicklung (nur zulässig mit zugelassenen Steuergeräten / Auslösegeräten)

Definition der Betriebsarten gemäß DIN EN 60034-1

^{*} Motoren der Type R3G (Zone 2) dürfen nur am Frequenzumrichter betrieben werden, wenn die Forderungen der Norm DIN EN 60079-15 / Teil 8.10.2 eingehalten werden.

Technische Daten zu Motoren Baureihe R3G + R3D

2-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min-1

Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /M _N	Mĸ/Mn	J [kgm²]	m [kg]
63K/2	IE2	0,18	2835	0,50	0,74	60,4	0,61	5,00	3,20	3,55	0,00014	4,50
63L/2	IE2	0,25	2820	0,60	0,81	64,8	0,85	5,45	3,05	3,35	0,00019	5,00
71K/2	IE2	0,37	2835	0,85	0,82	69,5	1,25	5,35	2,60	3,05	0,00034	6,00
71L/2	IE2	0,55	2840	1,20	0,83	74,1	1,85	5,95	3,00	3,30	0,00042	7,00
80K/2	IE3	0,75	2840	1,65	0,81	80,7	2,52	5,95	3,40	3,60	0,00064	9,00
80L/2	IE3	1,10	2850	2,35	0,81	82,7	3,69	6,80	4,50	4,00	0,00079	10,00
90L/2	IE3	1,50	2910	3,05	0,83	84,2	4,92	9,15	4,30	4,70	0,00155	17,00
90L/2	IE3	2,20	2875	4,50	0,83	85,9	7,31	7,70	3,95	3,90	0,00155	17,00
100V/2	IE3	3,00	2930	5,70	0,87	87,1	9,78	11,95	5,75	5,50	0,00360	30,00
112M/20	IE3	4,00	2940	7,75	0,85	88,1	13,0	10,70	3,90	4,80	0,00557	38,00
132S/20	IE3	5,50	2945	10,1	0,88	89,2	17,8	10,45	3,70	4,60	0,01220	48,00
132S/200	IE3	7,50	2945	13,8	0,87	90,1	24,3	11,00	4,25	4,95	0,01470	54,00
160M/20	IE3	11,00	2965	19,7	0,88	91,2	35,4	12,35	5,00	5,30	0,03940	119,00
160L/2	IE3	15,00	2960	26,2	0,90	91,9	48,4	12,00	5,15	5,05	0,04590	135,00
160L/20	IE3	18,50	2960	33,7	0,86	92,4	59,7	12,60	3,90	5,60	0,05640	141,00
180L/20	IE3	22,00	2965	38,0	0,90	92,7	70,9	11,95	3,90	4,70	0,07910	180,00
-	IE3	30,00				Tec	hnische Da	ten in Vorbe	ereitung			

Änderungen vorbehalten

2-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3600 min⁻¹

Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K /	J [kgm²]	m [kg]
63K/2	IE2	0,18	3455	0,45	0,70	64,0	0,50	5,85	3,95	4,40	0,00014	4,50
-	IE2	0,25		I.		Tec	hnische Da	ten in Vorb	ereitung	l .	I.	1
71K/2	IE2	0,37	3445	0,79	0,76	72,0	1,03	6,25	3,45	3,85	0,00034	6,00
71L/2	IE2	0,55	3465	1,05	0,80	74,0	1,52	7,35	3,50	3,90	0,00042	7,00
80K/2	IE3	0,75	3455	1,45	0,80	77,0	2,07	7,30	4,45	4,15	0,00064	9,00
80L/2	IE3	1,10	3470	2,05	0,80	84,0	3,03	8,00	4,55	4,55	0,00079	10,00
90L/2	IE3	1,50	3515	2,60	0,84	85,5	4,08	10,70	4,35	5,25	0,00155	17,00
90L/2	IE3	2,20	3500	3,85	0,82	86,5	6,00	9,10	4,00	4,60	0,00155	17,00
100V/2	IE3	3,00	3530	4,80	0,88	88,5	8,12	13,50	4,80	5,50	0,00360	30,00
132S/200	IE3	4,00	3560	6,25	0,90	88,5	10,7	12,50	4,35	5,50	0,01470	54,00
132S/200	IE3	5,50	3555	8,55	0,90	89,5	14,8	11,96	4,15	5,30	0,01470	54,00
132S/200	IE3	7,50	3550	11,7	0,89	90,2	20,2	11,05	3,85	4,90	0,01470	54,00
160M/20	IE3	11,00	3565	16,8	0,89	91,0	29,5	12,35	4,50	4,90	0,03940	119,00
160M/20	IE3	15,00	3560	23,2	0,88	91,0	40,2	11,05	4,05	4,40	0,03940	119,00
-	IE3	18,50			•	Tec	hnische Da	ten in Vorb	ereitung			
-	IE3	22,00	1									
-	IE3	30,00	1									

Änderungen vorbehalten

4-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹

Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A /I _N	M _A /M _N	M _K /M _N	J [kgm²]	m [kg]
63K/4	IE2	0,12	1360	0,40	0,71	59,1	0,84	3,10	2,05	2,30	0,00020	4,50
63L/4	IE2	0,18	1370	0,60	0,63	64,7	1,25	3,40	2,95	2,95	0,00025	5,00
71K/4	IE2	0,25	1415	0,70	0,70	68,5	1,69	4,35	2,30	2,65	0,00052	6,50
71L/4	IE2	0,37	1405	0,95	0,76	72,7	2,51	4,55	2,40	2,60	0,00064	7,50
80K/4	IE2	0,55	1405	1,40	0,74	77,1	3,74	4,65	2,35	2,65	0,00099	9,00
80L/40	IE3	0,75	1425	1,85	0,72	82,5	5,03	6,00	3,30	3,15	0,00150	14,50
90L/40	IE3	1,10	1445	2,50	0,75	84,1	7,27	6,85	3,50	4,00	0,00285	17,00
90V/4	IE3	1,50	1440	3,35	0,76	85,3	9,95	7,20	3,40	4,15	0,00355	21,00
100L/400	IE3	2,20	1450	4,65	0,79	86,7	14,5	8,10	3,85	4,25	0,00559	25,00
100V/4	IE3	3,00	1445	6,25	0,80	87,7	19,8	7,95	3,55	4,20	0,00718	30,00
112V/4	IE3	4,00	1455	8,15	0,80	88,6	26,3	8,80	3,70	4,55	0,01268	40,00
132M/4	IE3	5,50	1465	11,2	0,79	89,6	35,9	8,35	3,75	4,00	0,02750	64,00
132V/4	IE3	7,50	1465	15,4	0,78	90,4	48,9	8,85	4,25	4,50	0,03750	74,00
160L/40	IE3	11,00	1475	21,7	0,80	91,4	71,2	9,60	4,00	3,90	0,08040	142,00
160V/4	IE3	15,00	1475	29,9	0,79	92,1	97,1	8,95	3,80	3,85	0,09150	152,00
180L/40	IE3	18,50	1475	34,9	0,83	92,6	119,8	9,25	4,10	3,60	0,16630	225,00
-	IE3	22,00				Te	chnische Da	aten in Vo	bereitung			

Änderungen vorbehalten

4-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1800 min⁻¹

		- Dourious			<u> </u>			1000			•
Wirkungsgrad- klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs-grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
	P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	J [kgm²]	m [kg]
IE2	0,12				Tec	hnische Da	iten in Vorb	ereitung			
IE2	0,18	1695	0,55	0,56	68,0	1,01	4,05	3,75	3,75	0,00025	5,00
IE2	0,25	1730	0,65	0,65	70,0	1,38	5,05	2,65	3,15	0,00052	6,50
IE2	0,37	1720	0,80	0,71	72,0	2,05	5,30	2,70	3,00	0,00637	7,50
IE2	0,55	1720	1,20	0,71	75,5	3,05	5,50	2,70	3,05	0,00099	9,00
IE3	0,75	1735	1,55	0,71	83,5	4,13	6,70	3,30	3,60	0,00150	14,50
IE3	1,10	1745	2,05	0,77	86,5	6,02	8,40	3,70	4,30	0,00355	21,00
IE3	1,50	1745	2,85	0,77	86,5	8,21	8,10	3,70	4,45	0,00355	21,00
IE3	2,20	1760	3,95	0,78	89,5	11,9	9,75	3,15	4,70	0,01010	34,00
IE3	3,00	1760	5,30	0,79	89,5	16,3	10,60	3,80	5,30	0,01268	40,00
IE3	4,00	1770	7,05	0,79	89,5	21,6	9,95	4,20	4,45	0,02750	64,00
IE3	5,50	1770	9,70	0,78	91,7	29,7	9,85	4,15	5,05	0,03750	74,00
IE3	7,50	1780	12,7	0,81	91,7	40,2	9,40	3,25	3,95	0,08040	142,00
IE3	11,00	1780	18,9	0,79	92,4	59,0	9,15	3,20	4,15	0,09150	152,00
IE3	15,00	1775	25,4	0,80	93,0	80,7	8,25	2,85	3,75	0,09150	152,00
IE3	18,50	1780	30,3	0,82	93,6	99,2	9,10	3,25	4,00	0,16630	225,00
IE3	22,00			l	Tec	hnische Da	ten in Vorb	ereitung			
	IE2	Separation Sep	September Sept	Section Sect	ight of both line ight of both line	ψ b b b b b b b b b b b b b b b b b b b	Fig. Fig.	Feb Feb	Feb Feb	Fig. Fig.	P _N R R R R R R R

Änderungen vorbehalten

6-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹

Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs- moment	Kipp- zu Bemessungs- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A /I _N	M _A /M _N	M _K /M _N	J [kgm²]	m [kg]
63K/6	-	0,09	870	0,40	0,75	43,3	0,99	2,50	1,70	1,80	0,00029	4,50
63L/6	IE2	0,12	915	0,55	0,57	50,6	1,25	2,60	2,65	2,75	0,00042	5,00
71K/6	IE2	0,18	930	0,65	0,65	56,6	1,85	3,05	1,80	2,30	0,00081	6,50
71L/6	IE2	0,25	925	0,80	0,69	61,6	2,58	3,25	1,75	2,20	0,00101	7,50
80K/6	IE2	0,37	930	1,10	0,70	67,6	3,80	3,55	2,00	2,35	0,00191	10,00
80L/6	IE2	0,55	915	1,50	0,74	73,1	5,74	3,80	2,05	2,20	0,00239	11,00
90L/60	IE3	0,75	945	2,05	0,66	78,9	7,58	5,00	2,95	3,20	0,00419	18,20
90V/6	IE3	1,10	950	2,85	0,69	81,0	11,1	5,15	2,45	3,05	0,00649	22,50
100V/6	IE3	1,50	955	3,60	0,73	82,5	15,0	5,80	2,90	3,25	0,01122	28,00
112V/6	IE3	2,20	965	5,25	0,70	84,3	21,8	7,40	3,70	4,20	0,02000	43,00
132M/6	IE3	3,00	970	7,50	0,67	85,6	29,5	6,55	3,35	3,40	0,03230	52,00
132M/600	IE3	4,00	975	10,2	0,65	86,8	39,2	7,50	3,85	3,80	0,04240	64,00
132V/6	IE3	5,50	970	12,5	0,72	88,0	54,1	7,55	3,60	3,70	0,05057	75,00
160L/6	IE3	7,50	980	15,5	0,77	89,1	73,1	9,00	3,20	4,35	0,10990	135,00
180L/6	IE3	11,00	980	23,1	0,76	90,3	107,2	8,70	3,20	4,20	0,16500	200,00

Änderungen vorbehalten

6-polig 460V-60Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1200 min⁻¹

	omacco.	•		Jant. O I		- j		5112a111. 1				
Туре	Wirkungsgra d-klasse	Bemessungs -leistung	Bemessungs -drehzahl	Bemessungs -strom	Leistungs- faktor	Wirkungs- grad	Bemessungs -moment	Anzugs- zu Bemessungs -strom	Anzugs- zu Bemessungs -moment	Kipp- zu Bemessungs - moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos ф	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	J [kgm²]	m [kg]
	-	0,09			•	Tecl	hnische Date	en in Vorber	eitung			
	IE2	0,12										
	IE2	0,18										
71L/6	IE2	0,25	1140	0,70	0,62	59,5	2,09	3,85	2,20	2,75	0,00101	7,50
	IE2	0,37				Tecl	hnische Date	en in Vorber	eitung	ı	ı	
	IE2	0,55										
90V/6	IE3	0,75	1160	1,65	0,68	82,5	6,17	5,75	2,40	3,35	0,00649	22,50
	IE3	1,10			1	Tecl	hnische Date	en in Vorber	eitung	I	I	
	IE3	1,50										
	IE3	2,20										
	IE3	3,00										
	IE3	4,00										
	IE3	5,50	1									
	IE3	7,50										
	IE3	11,00	1									
	1											

Änderungen vorbehalten

2-polig 400V-50Hz IC 411 R3D mit Bremse

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

vvaimenias			Detiried					e Dieii	<u></u>	7000 11			
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/2-B4	IE2	0,18	2835	0,50	0,74	60,4	0,61	5,00	3,20	3,55	4,00	0,00016	5,50
63L/2-B4	IE2	0,25	2820	0,60	0,81	64,8	0,85	5,45	3,05	3,35	4,00	0,00021	6,00
71K/2-B4	IE2	0,37	2835	0,85	0,82	69,5	1,25	5,35	2,60	3,05	4,00	0,00036	7,00
71L/2-B4	IE2	0,55	2840	1,20	0,83	74,1	1,85	5,95	3,00	3,30	4,00	0,00043	8,00
80K/2-B8	IE3	0,75	2840	1,65	0,81	80,7	2,52	5,95	3,40	3,60	8,00	0,00070	10,50
80L/2-B8	IE3	1,10	2850	2,35	0,81	82,7	3,69	6,80	4,50	4,00	8,00	0,00085	11,50
90L/2-B16	IE3	1,50	2910	3,05	0,83	84,2	4,92	9,15	4,30	4,70	16,00	0,00175	19,00
90L/2-B16	IE3	2,20	2875	4,50	0,83	85,9	7,31	7,70	3,95	3,90	16,00	0,00175	19,00
100V/2-B32	IE3	3,00	2930	5,70	0,87	87,1	9,78	11,95	5,75	5,50	32,00	0,00400	33,50
112M/20- B60	IE3	4,00	2940	7,75	0,85	88,1	13,0	10,70	3,90	4,80	60,00	0,00617	43,50
132S/20- B80	IE3	5,50	2945	10,1	0,88	89,2	17,8	10,45	3,70	4,60	80,00	0,01300	56,00
132S/200- B80	IE3	7,50	2945	13,8	0,87	90,1	24,3	11,00	4,25	4,95	80,00	0,01550	62,00
160M/20- B150	IE3	11,00	2965	19,7	0,88	91,2	35,4	12,35	5,00	5,30	150,00	0,04060	131,00
160L/2- B150	IE3	15,00	2960	26,2	0,90	91,9	48,4	12,00	5,15	5,05	150,00	0,04710	147,00
160L/20- B150	IE3	18,50	2960	33,7	0,86	92,4	59,7	12,60	3,90	5,60	150,00	0,05760	153,00
180L/20- B260	IE3	22,00	2965	38,0	0,90	92,7	70,9	11,95	3,90	4,70	260,00	0,09000	199,00
-	IE3	30,00					Technisc	he Daten i	n Vorber	eitung			

Änderungen vorbehalten

2-polig 460V-60Hz IC 411 R3D mit Bremse

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3600 min⁻¹

							110111011						
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K /	M _{Bmax} [Nm]	J [kgm²]	m [kg]
-	IE2	0,18					Technisch	ne Daten ir	Norbere	eitung			
-	IE2	0,25											
71K/2-B4	IE2	0,37	3410	0,70	0,85	72,0	1,04	5,25	2,25	2,75	4,00	0,00036	7,00
71L/2-B4	IE2	0,55	3440	1,00	0,86	74,0	1,53	7,00	3,30	3,55	4,00	0,00043	8,00
80K/2-B8	IE3	0,75	3455	1,45	0,80	77,0	2,07	7,30	4,45	4,15	8,00	0,00070	10,50
80L/2-B8	IE3	1,10	3470	2,05	0,80	84,0	3,03	8,00	4,55	4,55	8,00	0,00085	11,50
90L/2-B16	IE3	1,50	3515	2,60	0,84	85,5	4,08	10,70	4,35	5,25	16,00	0,00175	19,00
90L/2-B16	IE3	2,20	3500	3,85	0,82	86,5	6,00	9,10	4,00	4,60	16,00	0,00175	19,00
100V/2-B32	IE3	3,00	3530	4,80	0,88	88,5	8,12	13,50	4,80	5,50	32,00	0,00400	33,50
132S/200- B80	IE3	4,00	3560	6,25	0,90	88,5	10,7	12,50	4,35	5,50	80,00	0,01550	62,00
132S/200- B80	IE3	5,50	3555	8,55	0,90	89,5	14,8	11,96	4,15	5,30	80,00	0,01550	62,00
132S/200- B80	IE3	7,50	3550	11,7	0,89	90,2	20,2	11,05	3,85	4,90	80,00	0,01550	62,00
160M/20- B150	IE3	11,00	3565	16,8	0,89	91,0	29,5	12,35	4,50	4,90	150,00	0,04060	131,00
160M/20- B150	IE3	15,00	3560	23,2	0,88	91,0	40,2	11,05	4,05	4,40	150,00	0,04060	131,00
-	IE3	18,50					Technisch	ne Daten ir	Norbere	eitung			
-	IE3	22,00											
-	IE3	30,00											

Änderungen vorbehalten

4-polig 400V-50Hz IC 411 R3D mit Bremse

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹

vvaimonia			Detrice			- ,	1101110110			000 111			
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs-	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A /	M _A /	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/4-B4	IE2	0,12	1360	0,40	0,71	59,1	0,84	3,10	2,05	2,30	4,00	0,00021	5,50
63L/4-B4	IE2	0,18	1370	0,60	0,63	64,7	1,25	3,40	2,95	2,95	4,00	0,00026	6,00
71K/4-B4	IE2	0,25	1415	0,70	0,70	68,5	1,69	4,35	2,30	2,65	4,00	0,00053	7,50
71L/4-B4	IE2	0,37	1405	0,95	0,76	72,7	2,51	4,55	2,40	2,60	4,00	0,00065	8,50
80K/4-B8	IE2	0,55	1405	1,40	0,74	77,1	3,74	4,65	2,35	2,65	8,00	0,00105	10,50
80L/40-B8	IE3	0,75	1425	1,85	0,72	82,5	5,03	6,00	3,30	3,15	8,00	0,00156	16,00
90L/40-B16	IE3	1,10	1445	2,50	0,75	84,1	7,27	6,85	3,50	4,00	16,00	0,00305	19,00
90V/4-B16	IE3	1,50	1440	3,35	0,76	85,3	9,95	7,20	3,40	4,15	16,00	0,00375	23,00
100L/400- B32	IE3	2,20	1450	4,65	0,79	86,7	14,5	8,10	3,85	4,25	32,00	0,00599	28,50
100V/4- B32	IE3	3,00	1445	6,25	0,80	87,7	19,8	7,95	3,55	4,20	32,00	0,00758	33,50
112V/4- B60	IE3	4,00	1455	8,15	0,80	88,6	26,3	8,80	3,70	4,55	60,00	0,01328	45,50
132M/4- B80	IE3	5,50	1465	11,2	0,79	89,6	35,9	8,35	3,75	4,00	80,00	0,02830	72,00
132V/4- B80	IE3	7,50	1465	15,4	0,78	90,4	48,9	8,85	4,25	4,50	80,00	0,03830	82,00
160L/40- B150	IE3	11,00	1475	21,7	0,80	91,4	71,2	9,60	4,00	3,90	150,00	0,08160	154,00
160V/4- B150	IE3	15,00	1475	29,9	0,79	92,1	97,1	8,95	3,80	3,85	150,00	0,09270	164,00
180L/40- B260	IE3	18,50	1475	34,9	0,83	92,6	119,8	9,25	4,10	3,60	260,00	0,17720	244,00
-	IE3	22,00					Technische	Daten ir	Norbere	itung			
Ä 15 d 5 11 115 51 5		الممامما											

Änderungen vorbehalten

4-polig 460V-60Hz IC 411 R3D mit Bremse

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1800 min-1

vvarinci			Doute			,						1	
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs-	Anzugs- zu Bemessungs-	Kipp-zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A / M _N	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
-	IE2	0,12				٦	echnische	Daten in \	/orbereit	ung		•	
63L/4-B4	IE2	0,18	1695	0,55	0,56	68,0	1,01	4,05	3,75	3,75	4,00	0,00026	6,00
71K/4-B4	IE2	0,25	1730	0,65	0,65	70,0	1,38	5,05	2,65	3,15	4,00	0,00053	7,50
71L/4-B4	IE2	0,37	1720	0,80	0,71	72,0	2,05	5,30	2,70	3,00	4,00	0,00650	8,50
80K74-B8	IE2	0,55	1720	1,20	0,71	75,5	3,05	5,50	2,70	3,05	8,00	0,00099	9,00
80L/40- B8	IE3	0,75	1735	1,55	0,71	83,5	4,13	6,70	3,30	3,60	8,00	0,00156	16,00
90V/4- B16	IE3	1,10	1745	2,05	0,77	86,5	6,02	8,40	3,70	4,30	16,00	0,00375	23,00
90V/4- B16	IE3	1,50	1745	2,85	0,77	86,5	8,21	8,10	3,70	4,45	16,00	0,00375	23,00
112M/4- B60	IE3	2,20	1760	3,95	0,78	89,5	11,9	9,75	3,15	4,70	60,00	0,01070	39,50
112V/4- B60	IE3	3,00	1760	5,30	0,79	89,5	16,3	10,60	3,80	5,30	60,00	0,01328	45,50
132M/4- B80	IE3	4,00	1770	7,05	0,79	89,5	21,6	9,95	4,20	4,45	80,00	0,02830	72,00
132V/4- B80	IE3	5,50	1770	9,70	0,78	91,7	29,7	9,85	4,15	5,05	80,00	0,03830	82,00
160L/40- B150	IE3	7,50	1780	12,7	0,81	91,7	40,2	9,40	3,25	3,95	150,00	0,08160	154,00
160V/4- B150	IE3	11,00	1780	18,9	0,79	92,4	59,0	9,15	3,20	4,15	150,00	0,09270	164,00
160V/4- B150	IE3	15,00	1775	25,4	0,80	93,0	80,7	8,25	2,85	3,75	150,00	0,09270	164,00
180L/40- B260	IE3	18,50	1780	30,3	0,82	93,6	99,2	9,10	3,25	4,00	260,00	0,17720	244,00
-	IE3	22,00				1	echnische	Daten in \	√orbereitı	ung			
. .		orhehalt	i										

Änderungen vorbehalten

6-polig 400V-50Hz IC 411 R3D mit Bremse

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹

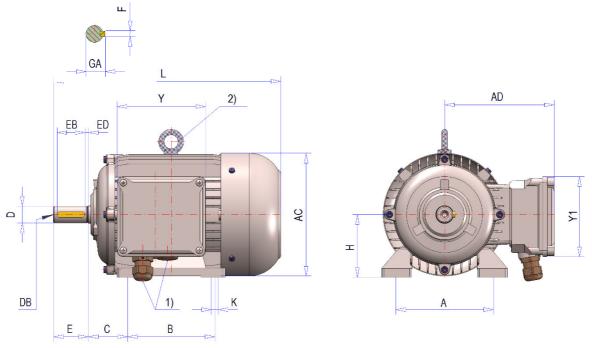
Туре	Wirkungsgrad -klasse	Bemessungs- leistung	Bemessungs- drehzahl	Bemessungs- strom	Leistungs- faktor	Wirkungs- grad	Bemessungs- moment	Anzugs- zu Bemessungs- strom	Anzugs- zu Bemessungs-	Kipp- zu Bemessungs-	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos φ	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K /	M _{Bmax} [Nm]	J [kgm²]	m [kg]
63K/6-B4	-	0,09	870	0,40	0,75	43,3	0,99	2,50	1,70	1,80	4,00	0,00030	5,50
63L/6-B4	IE2	0,12	915	0,55	0,57	50,6	1,25	2,60	2,65	2,75	4,00	0,00043	6,00
71K/6-B4	IE2	0,18	930	0,65	0,65	56,6	1,85	3,05	1,80	2,30	4,00	0,00082	7,50
71L/6-B4	IE2	0,25	925	0,80	0,69	61,6	2,58	3,25	1,75	2,20	4,00	0,00102	8,50
80K/6-B8	IE2	0,37	930	1,10	0,70	67,6	3,80	3,55	2,00	2,35	8,00	0,00197	11,50
80L/6-B8	IE2	0,55	915	1,50	0,74	73,1	5,74	3,80	2,05	2,20	8,00	0,00245	12,50
90L/60-B16	IE3	0,75	945	2,05	0,66	78,9	7,58	5,00	2,95	3,20	16,00	0,00439	20,20
90V/6-B16	IE3	1,10	950	2,85	0,69	81,0	11,1	5,15	2,45	3,05	16,00	0,00669	24,50
100V/6-B32	IE3	1,50	955	3,60	0,73	82,5	15,0	5,80	2,90	3,25	32,00	0,01162	31,50
112V/6-B60	IE3	2,20	965	5,25	0,70	84,3	21,8	7,40	3,70	4,20	60,00	0,02060	48,50
132M/6-B80	IE3	3,00	970	7,50	0,67	85,6	29,5	6,55	3,35	3,40	80,00	0,03310	60,00
132M/600-B80	IE3	4,00	975	10,2	0,65	86,8	39,2	7,50	3,85	3,80	80,00	0,04320	72,00
132V/6-B80	IE3	5,50	970	12,5	0,72	88,0	54,1	7,55	3,60	3,70	80,00	0,05137	83,00
160L/6-B150	IE3	7,50	980	15,5	0,77	89,1	73,1	9,00	3,20	4,35	150,00	0,11110	147,00
180L/6-B260	IE3	11,00	980	23,1	0,76	90,3	107,2	8,70	3,20	4,20	260,00	0,17590	219,00

Änderungen vorbehalten

6-polig 460V-60Hz IC 411 R3D mit Bremse

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1200 min-1

Туре	Wirkungsgra d-klasse	Bemessungs -leistung	Bemessungs -drehzahl	Bemessungs -strom	Leistungs- faktor	Wirkungs- grad	Bemessungs -moment	Anzugs- zu Bemessungs -strom	Anzugs- zu Bemessungs -moment	Kipp- zu Bemessungs - moment	Brems- moment	Trägheits- moment	Gewicht (IM B3)
		P _N [kW]	n _N [min ⁻¹]	I _N [A]	cos ф	η [%]	M _N [Nm]	I _A / I _N	M _A /	M _K / M _N	M _{Bmax} [Nm]	J [kgm²]	m [kg]
	-	0,09					Technische	e Daten in	Vorbereitu	ıng			
	IE2	0,12											
	IE2	0,18											
71L/6- B4	IE2	0,25	1140	0,70	0,62	59,5	2,09	3,85	2,20	2,75	4,00	0,00102	8,50
	IE2	0,37					Technische	e Daten in	Vorbereitu	ıng			
	IE2	0,55											
90V/6- B16	IE3	0,75	1160	1,65	0,68	82,5	6,17	5,75	2,40	3,35	16,00	0,00669	24,50
	IE3	1,10				•	Technische	e Daten in	Vorbereitu	ıng			
	IE3	1,50											
	IE3	2,20											
	IE3	3,00											
	IE3	4,00											
	IE3	5,50											
	IE3	7,50											
<u>.</u>	IE3	11,00											


Änderungen vorbehalten

Maßblätter zu Motoren Baureihe R3G + R3D

Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 /

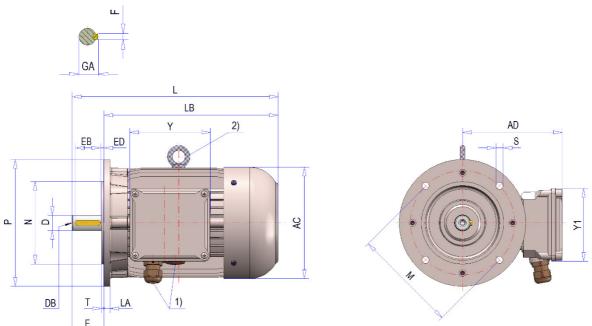
Zone 2 und Zone 22 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)

Änderungen vorbehalten

Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R3 63 K/L	80	100	7	63	40	11	23	M4	123	121	117	103	12,5	4	18	2,5	211
R3 71 K/L	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	243
R3 80 K/L	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	274
R3 90 S	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	301
R3 90 L	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	326
R3 90 V	125	140	10	90	56	24	50	M8	176	366	127	115	27	8	40	5	326
R3 100 L	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	366
R3 100 V	140	160	11,2	100	63	28	60	M10	194	416	127	115	31	8	50	5	366
R3 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	383
R3 112 V	140	190	11,2	112	70	28	60	M10	218	423	127	115	31	8	50	5	383
R3 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	449
R3 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	487
R3 132 V	178	216	11	132	89	38	80	M12	258	537	145	130	41	10	70	5	487
R3 160 M	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	588
R3 160 L	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	632
R3 160 V	254	254	14,5	160	108	42	110	M16	310	662	186	186	45	12	90	10	632
R3 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	653
R3 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	691


* Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

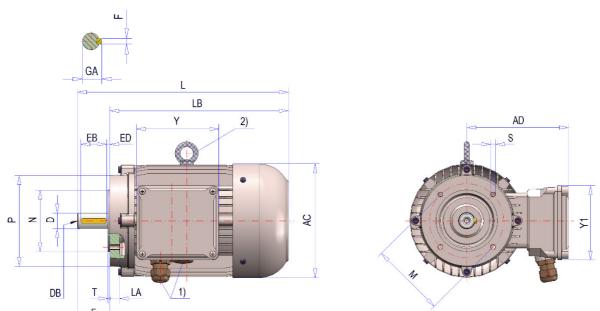
Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone 22 / Bauform IM B5

- 1) siehe Planungsteil (Abschnitt *Kabeleinführungen im Klemmenkasten*)
- 2) mit Trageöse ab Baugröße 112

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

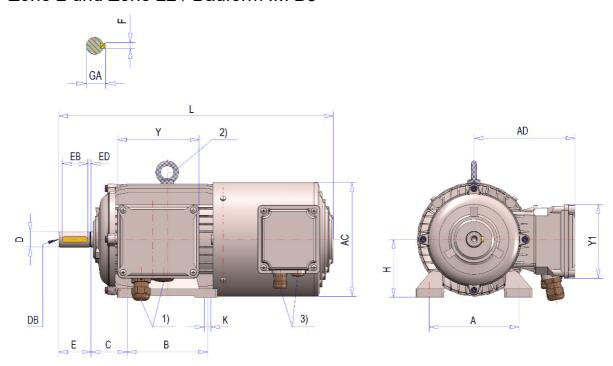
Тур	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
R3F 63 K/L	11	23	M4	123	121	117	103	12,5	4	18	2,5	211	188	9	115	95	140	3	10
R3F 71 K/L	14	30	M5	138	130	117	103	16	5	25	2,5	243	213	9	130	110	160	3,5	10
R3F 80 K/L	19	40	M6	156	144	127	115	21,5	6	32	4	274	234	9	165	130	200	3,5	10
R3F 90 S	24	50	M8	176	157	127	115	27	8	40	5	301	251	9	165	130	200	3,5	10
R3F 90 L	24	50	M8	176	157	127	115	27	8	40	5	326	276	9	165	130	200	3,5	10
R3F 90 V	24	50	M8	176	157	127	115	27	8	40	5	366	316	9	165	130	200	3,5	10
R3F 100 L	28	60	M10	194	166	127	115	31	8	50	5	366	306	9	215	180	250	4	14
R3F 100 V	28	60	M10	194	166	127	115	31	8	50	5	416	356	9	215	180	250	4	14
R3F 112 M	28	60	M10	218	178	127	115	31	8	50	5	383	323	11	215	180	250	4	13
R3F 112 V	28	60	M10	218	178	127	115	31	8	50	5	423	363	11	215	180	250	4	13
R3F 132 S	38	80	M12	258	197	145	130	41	10	70	5	449	369	14	265	230	300	4	11,5
R3F 132 M	38	80	M12	258	197	145	130	41	10	70	5	487	407	14	265	230	300	4	11,5
R3F 132 V	38	80	M12	258	197	145	130	41	10	70	5	537	457	14	265	230	300	4	11,5
R3F 160 M	42	110	M16	310	244	186	186	45	12	90	10	588	478	18	300	250	350	5	13,5
R3F 160 L	42	110	M16	310	244	186	186	45	12	90	10	632	522	18	300	250	350	5	13,5
R3F 160 V	42	110	M16	310	244	186	186	45	12	90	10	662	552	18	300	250	350	5	13,5
R3F 180 M	48	110	M16	348	254	175	190	51,5	14	100	5	653	543	18	300	250	350	5	14
R3F 180 L	48	110	M16	348	254	175	190	51,5	14	100	5	691	581	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone 22 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112

Passungen und Toleranzen (Abschnitt Passungen und Toleranzen)


Änderungen vorbehalten

Тур	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
R3F 63 K/L	11	23	M4	123	121	117	103	12,5	4	18	2,5	211	188	M5	75	60	90	2,5	9,5
R3F 71 K/L	14	30	M5	138	130	117	103	16	5	25	2,5	243	213	M6	85	70	105	2,5	10
R3F 80 K/L	19	40	M6	156	144	127	115	21,5	6	32	4	274	234	M6	100	80	120	3	12,5
R3F 90 S	24	50	M8	176	157	127	115	27	8	40	5	301	251	M8	115	95	140	3	15
R3F 90 L	24	50	M8	176	157	127	115	27	8	40	5	326	276	M8	115	95	140	3	15
R3F 90 V	24	50	M8	176	157	127	115	27	8	40	5	366	316	M8	115	95	140	3	15
R3F 100 L	28	60	M10	194	166	127	115	31	8	50	5	366	306	M8	130	110	160	3,5	12,5
R3F 100 V	28	60	M10	194	166	127	115	31	8	50	5	416	356	M8	130	110	160	3,5	12,5
R3F 112 M	28	60	M10	218	178	127	115	31	8	50	5	383	323	M8	130	110	160	3,5	16
R3F 112 V	28	60	M10	218	178	127	115	31	8	50	5	423	363	M8	130	110	160	3,5	16
R3F 132 S	38	80	M12	258	197	145	130	41	10	70	5	449	369	M10	165	130	200	3,5	15
R3F 132 M	38	80	M12	258	197	145	130	41	10	70	5	487	407	M10	165	130	200	3,5	15
R3F 132 V	38	80	M12	258	197	145	130	41	10	70	5	537	457	M10	165	130	200	3,5	15
R3F 160 M	42	110	M16	310	244	186	186	45	12	90	10	615	505	M12	215	180	250	4	14
R3F 160 L	42	110	M16	310	244	186	186	45	12	90	10	659	549	M12	215	180	250	4	14
R3F 160 V	42	110	M16	310	244	186	186	45	12	90	10	689	579	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone 22 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x Kabelverschraubung M16x1,5 / 1x Verschlussschraube M16x1,5 Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

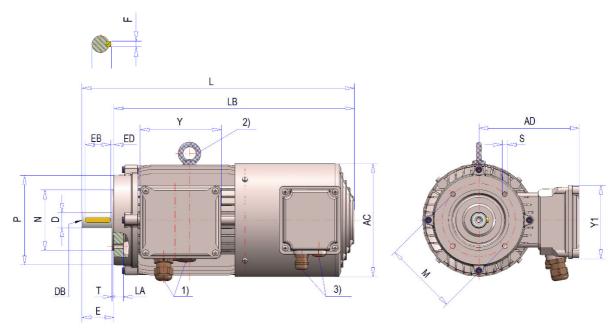
Тур	В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R3 63 K/L	80	100	7	63	40	11	23	M4	124	121	117	103	12,5	4	18	2,5	309
R3 71 K/L	90	112	7	71	45	14	30	M5	139	130	117	103	16	5	25	2,5	337
R3 80 K/L	100	125	9,5	80	50	19	40	M6	157	144	127	115	21,5	6	32	4	367
R3 90 S	100	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	402
R3 90 L	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	427
R3 90 V	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	467
R3 100 L	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	465
R3 100 V	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	515
R3 112 M	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	483
R3 112 V	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	523
R3 132 S	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	578
R3 132 M	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	616
R3 132 V	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	666
R3 160 M	210	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	737
R3 160 L	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	781
R3 160 V	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	811
R3 180 M	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	800
R3 180 L	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	838


* Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone 22 / Bauform IM B5


- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x Kabelverschraubung M16x1,5 / 1x Verschlussschraube M16x1,5 Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

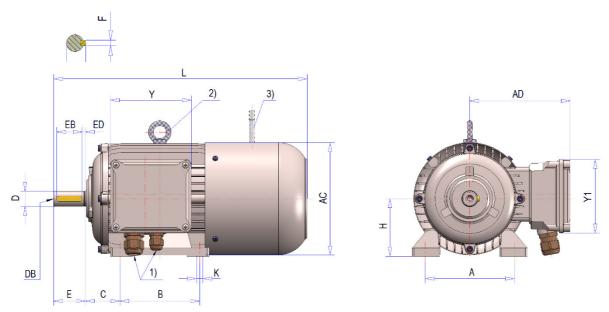
Тур	D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	T	LA
R3F 63 K/L	11	23	M4	124	121	117	103	12,5	4	18	2,5	309	286	9	115	95	140	3	10
R3F 71 K/L	14	30	M5	139	130	117	103	16	5	25	2,5	337	307	9	130	110	160	3,5	10
R3F 80 K/L	19	40	M6	157	144	127	115	21,5	6	32	4	367	327	9	165	130	200	3,5	10
R3F 90 S	24	50	M8	177	157	127	115	27	8	40	5	402	352	9	165	130	200	3,5	10
R3F 90 L	24	50	M8	177	157	127	115	27	8	40	5	427	377	9	165	130	200	3,5	10
R3F 90 V	24	50	M8	177	157	127	115	27	8	40	5	467	417	9	165	130	200	3,5	10
R3F 100 L	28	60	M10	195	166	127	115	31	8	50	5	465	405	9	215	180	250	4	14
R3F 100 V	28	60	M10	195	166	127	115	31	8	50	5	515	455	9	215	180	250	4	14
R3F 112 M	28	60	M10	218	178	127	115	31	8	50	5	483	423	11	215	180	250	4	13
R3F 112 V	28	60	M10	218	178	127	115	31	8	50	5	533	473	11	215	180	250	4	13
R3F 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	14	265	230	300	4	11,5
R3F 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	14	265	230	300	4	11,5
R3F 132 V	38	80	M12	258	197	145	130	41	10	70	5	690	610	14	265	230	300	4	11,5
R3F 160 M	42	110	M16	311	244	186	186	45	12	90	10	737	627	18	300	250	350	5	13,5
R3F 160 L	42	110	M16	311	244	186	186	45	12	90	10	781	671	18	300	250	350	5	13,5
R3F 160 V	42	110	M16	311	244	186	186	45	12	90	10	811	701	18	300	250	350	5	13,5
R3F 180 M	48	110	M16	348	254	175	190	51,5	14	100	5	800	690	18	300	250	350	5	14
R3F 180 L	48	110	M16	348	254	175	190	51,5	14	100	5	838	728	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 2 und Zone 22 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x Kabelverschraubung M16x1,5 / 1x Verschlussschraube M16x1,5 Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур	D	E	DB	AC	AD	Y	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
R3F 63 K/L	11	23	M4	124	104	70	70	12,5	4	18	2,5	309	286	M5	75	60	90	2,5	9,5
R3F 71 K/L	14	30	M5	139	114	70	70	16	5	25	2,5	337	307	M6	85	70	105	2,5	10
R3F 80 K/L	19	40	M6	157	134	85	85	21,5	6	32	4	367	327	M6	100	80	120	3	12,5
R3F 90 S	24	50	M8	177	137	85	85	27	8	40	5	402	352	M8	115	95	140	3	15
R3F 90 L	24	50	M8	177	137	85	85	27	8	40	5	427	377	M8	115	95	140	3	15
R3F 90 V	24	50	M8	177	137	85	85	27	8	40	5	467	417	M8	115	95	140	3	15
R3F 100 L	28	60	M10	195	148	85	85	31	8	50	5	465	405	M8	130	110	160	3,5	12,5
R3F 100 V	28	60	M10	195	148	85	85	31	8	50	5	515	455	M8	130	110	160	3,5	12,5
R3F 112 M	28	60	M10	218	158	85	85	31	8	50	5	483	423	M8	130	110	160	3,5	16
R3F 112 V	28	60	M10	218	158	85	85	31	8	50	5	533	473	M8	130	110	160	3,5	16
R3F 132 S	38	80	M12	258	197	145	130	41	10	70	5	578	498	M10	165	130	200	3,5	15
R3F 132 M	38	80	M12	258	197	145	130	41	10	70	5	616	536	M10	165	130	200	3,5	15
R3F 132 V	38	80	M12	258	197	145	130	41	10	70	5	690	610	M10	165	130	200	3,5	15
R3F 160 M	42	110	M16	311	244	186	186	45	12	90	10	764	654	M12	215	180	250	4	14
R3F 160 L	42	110	M16	311	244	186	186	45	12	90	10	808	698	M12	215	180	250	4	14
R3F 160 V	42	110	M16	311	244	186	186	45	12	90	10	838	728	M12	215	180	250	4	14


^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

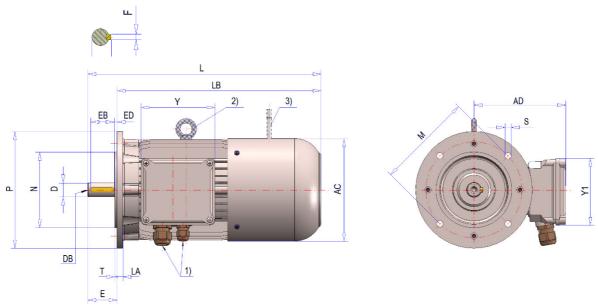
Maßblätter zu Bremsmotoren Baureihe R3D

Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 /

Zone 22 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

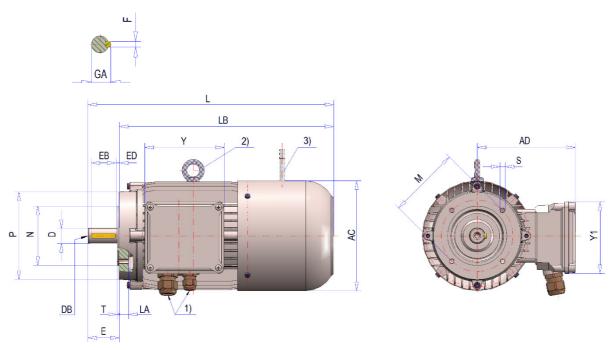
Тур		В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R3D 63 K/L	B4	80	100	7	63	40	11	23	M4	123	121	117	103	12,5	4	18	2,5	260
R3D 71 K/L	B4	90	112	7	71	45	14	30	M5	138	130	117	103	16	5	25	2,5	298
R3D 80 K/L	B8	100	125	9,5	80	50	19	40	M6	156	144	127	115	21,5	6	32	4	331
R3D 90 S	B16	100	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	369
R3D 90 L	B16	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	394
R3D 90 V	B16	125	140	10	90	56	24	50	M8	176	157	127	115	27	8	40	5	434
R3D 100 L	B32	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	444
R3D 100 V	B32	140	160	11,2	100	63	28	60	M10	194	166	127	115	31	8	50	5	494
R3D 112 M	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	464
R3D 112 V	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	504
R3D 132 S	B80	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	537
R3D 132 M	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	575
R3D 132 V	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	625
R3D 160 M	B150	210	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	682
R3D 160 L	B150	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	726
R3D 160 V	B150	254	254	14,5	160	108	42	110	M16	310	244	186	186	45	12	90	10	756
R3D 180 M	B260	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	768
R3D 180 L	B260	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	806


^{*} Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

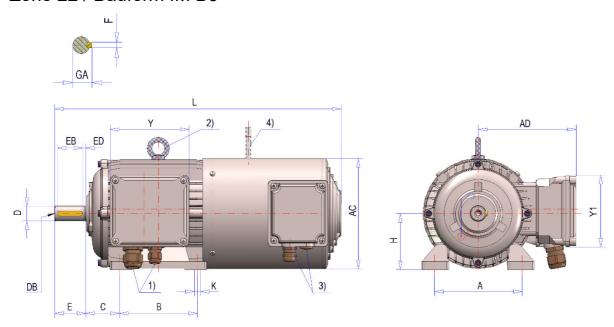
Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 22 / Bauform IM B5


- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур		D	Е	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
R3DF 63 K/L	B4	11	23	M4	123	121	117	103	12,5	4	18	2,5	260	237	9	115	95	140	3	10
R3DF 71 K/L	B4	14	30	M5	138	130	117	103	16	5	25	2,5	298	268	9	130	110	160	3,5	10
R3DF 80 K/L	B8	19	40	M6	156	144	127	115	21,5	6	32	4	331	291	9	165	130	200	3,5	10
R3DF 90 S	B16	24	50	M8	176	157	127	115	27	8	40	5	369	319	9	165	130	200	3,5	10
R3DF 90 L	B16	24	50	M8	176	157	127	115	27	8	40	5	394	344	9	165	130	200	3,5	10
R3DF 90 V	B16	24	50	M8	176	157	127	115	27	8	40	5	434	384	9	165	130	200	3,5	10
R3DF 100 L	B32	28	60	M10	194	166	127	115	31	8	50	5	444	384	9	215	180	250	4	14
R3DF 100 V	B32	28	60	M10	194	166	127	115	31	8	50	5	494	434	9	215	180	250	4	14
R3DF 112 M	B60	28	60	M10	218	178	127	115	31	8	50	5	464	404	11	215	180	250	4	13
R3DF 112 V	B60	28	60	M10	218	178	127	115	31	8	50	5	504	444	11	215	180	250	4	13
R3DF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	537	457	14	265	230	300	4	11,5
R3DF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	575	495	14	265	230	300	4	11,5
R3DF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	625	545	14	265	230	300	4	11,5
R3DF 160 M	B150	42	110	M16	310	244	186	186	45	12	90	10	682	572	18	300	250	350	5	13,5
R3DF 160 L	B150	42	110	M16	310	244	186	186	45	12	90	10	726	616	18	300	250	350	5	13,5
R3DF 160 V	B150	42	110	M16	310	244	186	186	45	12	90	10	756	646	18	300	250	350	5	13,5
R3DF 180 M	B260	48	110	M16	348	254	175	190	51,5	14	100	5	768	658	18	300	250	350	5	14
R3DF 180 L	B260	48	110	M16	348	254	175	190	51,5	14	100	5	806	696	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC411 eigenbelüftet / Schutzart: ≥IP 55 / Zone 22 / Bauform IM B14


- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

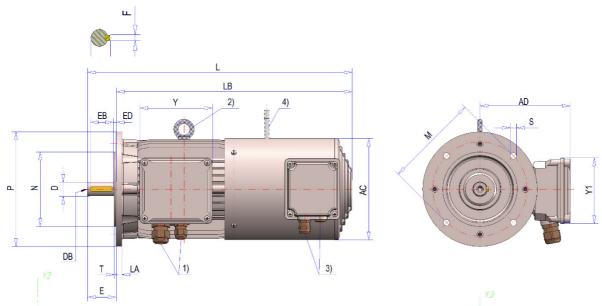
Тур		D	Ε	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
R3DF 63 K/L	B4	11	23	M4	123	121	117	103	12,5	4	18	2,5	260	237	M5	75	60	90	2,5	9,5
R3DF 71 K/L	B4	14	30	M5	138	130	117	103	16	5	25	2,5	298	268	M6	85	70	105	2,5	10
R3DF 80 K/L	B8	19	40	M6	156	144	127	115	21,5	6	32	4	331	291	M6	100	80	120	3	12,5
R3DF 90 S	B16	24	50	M8	176	157	127	115	27	8	40	5	369	319	M8	115	95	140	3	15
R3DF 90 L	B16	24	50	M8	176	157	127	115	27	8	40	5	394	344	M8	115	95	140	3	15
R3DF 90 V	B16	24	50	M8	176	157	127	115	27	8	40	5	434	384	M8	115	95	140	3	15
R3DF 100 L	B32	28	60	M10	194	166	127	115	31	8	50	5	444	384	M8	130	110	160	3,5	12,5
R3DF 100 V	B32	28	60	M10	194	166	127	115	31	8	50	5	494	434	M8	130	110	160	3,5	12,5
R3DF 112 M	B60	28	60	M10	218	178	127	115	31	8	50	5	464	404	M8	130	110	160	3,5	16
R3DF 112 V	B60	28	60	M10	218	178	127	115	31	8	50	5	504	444	M8	130	110	160	3,5	16
R3DF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	537	457	M10	165	130	200	3,5	15
R3DF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	575	495	M10	165	130	200	3,5	15
R3DF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	625	545	M10	165	130	200	3,5	15
R3DF 160 M	B150	42	110	M16	310	244	186	186	45	12	90	10	682	572	M12	215	180	250	4	14
R3DF 160 L	B150	42	110	M16	310	244	186	186	45	12	90	10	726	616	M12	215	180	250	4	14
R3DF 160 V	B150	42	110	M16	310	244	186	186	45	12	90	10	756	646	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 22 / Bauform IM B3

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5 Kabelverschraubung / 1x M16x1,5 Verschlussschraube
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

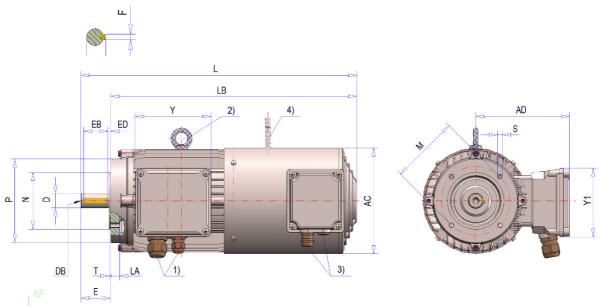
Тур		В	Α	K	Н	С	D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L
R3D 63 K/L	B4	80	100	7	63	40	11	23	M4	124	121	117	103	12,5	4	18	2,5	324
R3D 71 K/L	B4	90	112	7	71	45	14	30	M5	139	130	117	103	16	5	25	2,5	367
R3D 80 K/L	B8	100	125	9,5	80	50	19	40	M6	157	144	127	115	21,5	6	32	4	402
R3D 90 S	B16	100	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	437
R3D 90 L	B16	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	462
R3D 90 V	B16	125	140	10	90	56	24	50	M8	177	157	127	115	27	8	40	5	502
R3D 100 L	B32	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	510
R3D 100 V	B32	140	160	11,2	100	63	28	60	M10	195	166	127	115	31	8	50	5	560
R3D 112 M	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	533
R3D 112 V	B60	140	190	11,2	112	70	28	60	M10	218	178	127	115	31	8	50	5	573
R3D 132 S	B80	140	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	652
R3D 132 M	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	690
R3D 132 V	B80	178	216	11	132	89	38	80	M12	258	197	145	130	41	10	70	5	740
R3D 160 M	B150	210	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	792
R3D 160 L	B150	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	836
R3D 160 V	B150	254	254	14,5	160	108	42	110	M16	311	244	186	186	45	12	90	10	866
R3D 180 M	B260	241	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	925
R3D 180 L	B260	279	279	13	180	121	48	110	M16	348	254	175	190	51,5	14	100	5	963


* Bauform IM B3 / IM 1001, IM B6 / IM 1051, IM B7 / IM 1061, IM B8 / IM 1071, IM V5 / IM 1011, IM V6 / IM 1031 (*Abschnitt Bauformen*)

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 22 / Bauform IM B5


- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5 Kabelverschraubung / 1x M16x1,5 Verschlussschraube
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур		D	Е	DB	AC	AD	Y	Y1	GA	F	EB	ED	L	LB	S	М	N	Р	Т	LA
R3DF 63 K/L	B4	11	23	M4	124	121	117	103	12,5	4	18	2,5	324	301	9	115	95	140	3	10
R3DF 71 K/L	B4	14	30	M5	139	130	117	103	16	5	25	2,5	367	337	9	130	110	160	3,5	10
R3DF 80 K/L	B8	19	40	M6	157	144	127	115	21,5	6	32	4	402	362	9	165	130	200	3,5	10
R3DF 90 S	B16	24	50	M8	177	157	127	115	27	8	40	5	437	387	9	165	130	200	3,5	10
R3DF 90 L	B16	24	50	M8	177	157	127	115	27	8	40	5	462	412	9	165	130	200	3,5	10
R3DF 90 V	B16	24	50	M8	177	157	127	115	27	8	40	5	502	452	9	165	130	200	3,5	10
R3DF 100 L	B32	28	60	M10	195	166	127	115	31	8	50	5	510	450	9	215	180	250	4	14
R3DF 100 V	B32	28	60	M10	195	166	127	115	31	8	50	5	560	500	9	215	180	250	4	14
R3DF 112 M	B60	28	60	M10	219	178	127	115	31	8	50	5	533	473	11	215	180	250	4	13
R3DF 112 V	B60	28	60	M10	219	178	127	115	31	8	50	5	573	513	11	215	180	250	4	13
R3DF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	652	572	14	265	230	300	4	11,5
R3DF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	690	610	14	265	230	300	4	11,5
R3DF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	740	660	14	265	230	300	4	11,5
R3DF 160 M	B150	42	110	M16	311	244	186	186	45	12	90	10	792	682	18	300	250	350	5	13,5
R3DF 160 L	B150	42	110	M16	311	244	186	186	45	12	90	10	836	726	18	300	250	350	5	13,5
R3DF 160 V	B150	42	110	M16	311	244	186	186	45	12	90	10	866	756	18	300	250	350	5	13,5
R3DF 180 M	B260	48	110	M16	348	254	175	190	51,5	14	100	5	925	815	18	300	250	350	5	14
R3DF 180 L	B260	48	110	M16	348	254	175	190	51,5	14	100	5	963	853	18	300	250	350	5	14

^{*} Bauform IM B5 / IM 3001, IM V1 / IM 3011, IM V3 / IM 3031 (Abschnitt Bauformen)

Baugröße: 63 – 180 / Kühlart: IC416 fremdbelüftet / Schutzart: ≥IP 55 / Zone 22 / Bauform IM B14

- 1) siehe Planungsteil (Abschnitt Kabeleinführungen im Klemmenkasten)
- 2) mit Trageöse ab Baugröße 112
- 3) 1x M16x1,5 Kabelverschraubung / 1x M16x1,5 Verschlussschraube
- 4) Handlüftung optional (Bestellbar in Lage 0°/90°/180°/270° siehe Abschnitt Klemmenkastenlage) Passungen und Toleranzen (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Тур		D	E	DB	AC	AD	Υ	Y1	GA	F	EB	ED	L	LB	S	M	N	Р	T	LA
R3DF 63 K/L	B4	11	23	M4	124	121	117	103	12,5	4	18	2,5	324	301	M5	75	60	90	2,5	9,5
R3DF 71 K/L	B4	14	30	M5	139	130	117	103	16	5	25	2,5	367	337	M6	85	70	105	2,5	10
R3DF 80 K/L	B8	19	40	M6	157	144	127	115	21,5	6	32	4	402	362	M6	100	80	120	3	12,5
R3DF 90 S	B16	24	50	M8	177	157	127	115	27	8	40	5	437	387	M8	115	95	140	3	15
R3DF 90 L	B16	24	50	M8	177	157	127	115	27	8	40	5	462	412	M8	115	95	140	3	15
R3DF 90 V	B16	24	50	M8	177	157	127	115	27	8	40	5	502	452	M8	115	95	140	3	15
R3DF 100 L	B32	28	60	M10	195	166	127	115	31	8	50	5	510	450	M8	130	110	160	3,5	12,5
R3DF 100 V	B32	28	60	M10	195	166	127	115	31	8	50	5	560	500	M8	130	110	160	3,5	12,5
R3DF 112 M	B60	28	60	M10	219	178	127	115	31	8	50	5	533	473	M8	130	110	160	3,5	16
R3DF 112 V	B60	28	60	M10	219	178	127	115	31	8	50	5	573	513	M8	130	110	160	3,5	16
R3DF 132 S	B80	38	80	M12	258	197	145	130	41	10	70	5	652	572	M10	165	130	200	3,5	15
R3DF 132 M	B80	38	80	M12	258	197	145	130	41	10	70	5	690	610	M10	165	130	200	3,5	15
R3DF 132 V	B80	38	80	M12	258	197	145	130	41	10	70	5	740	660	M10	165	130	200	3,5	15
R3DF 160 M	B150	42	110	M16	311	244	186	186	45	12	90	10	819	709	M12	215	180	250	4	14
R3DF 160 L	B150	42	110	M16	311	244	186	186	45	12	90	10	863	753	M12	215	180	250	4	14
R3DF 160 V	B150	42	110	M16	311	244	186	186	45	12	90	10	893	783	M12	215	180	250	4	14

^{*} Bauform IM B14 / IM 3601, IM V18 / IM 3611, IM V19 / IM 3631 (Abschnitt Bauformen)

Ex-geschützte Motoren Baureihe DEx

Ex-geschützte Motoren Baureihe DEx

Inhalt Planungsteil Ex-geschützte Motoren Baureihe DEx

Übersicht Fertigungsprogramm

Die **HEW** produziert seit über 125 Jahren Asynchronmotoren. Unser Fertigungsprogramm umfasst folgende Varianten:

- Explosionsgeschützte Drehstrommotoren
- Explosionsgeschützte Drehstrom-Bremsmotoren
- Norm-Drehstrommotoren (siehe Katalogteil Baureihe R)
- Standard Polumschaltbare Drehstrommotoren (siehe Katalogteil Baureihe R)
- Standard Polumschaltbare Drehstrommotoren- Lüfterantriebe (siehe Katalogteil Baureihe R)
- Reluktanzmotoren (siehe Katalogteil Baureihe R)
- Einphasenmotoren (siehe Katalogteil Baureihe R)
- Bremsmotoren (siehe Katalogteil Baureihe R)
- Drehfeldmagnete (siehe Katalogteil Baureihe R)
- Tauchmotoren (siehe Katalogteil Baureihe R)
- Hygienemotoren (siehe Katalogteil Baureihe R)
- Ex-geschützte Drehstrommotoren für Einsatz in Zone 2 (siehe Katalogteil Baureihe R)
- Ex-geschützte Drehstrom(brems)motoren für Einsatz in Zone 22 (siehe Katalogteil Baureihe R)

Unsere Motoren sind aufgrund eines hochwertigen Isolationssystems für Umrichterbetrieb geeignet. Sie werden grundsätzlich in der Wärmeklasse F gefertigt und standardmäßig mit Kaltleiter ausgerüstet (andere Temperaturüberwachungselemente sind auf Anfrage lieferbar).

Der Einsatz von Drehstrommotoren in anspruchsvollen Antriebssystemen verlangt oftmals den Anbau von Rückführelementen. HEW liefert die Motoren auf Kundenwunsch auch mit Inkrementalgeber. Die Ausrüstung mit diesen Gebern kann wahlweise an explo-sionsgeschützten Drehstrommotoren bzw. explosionsgeschützten Drehstrom-Bremsmotoren erfolgen.

Standardmäßig sind die Motoren in Schutzart IP 55 ausgeführt. Optional können auch höhere Schutzarten geliefert werden (siehe IP Schutzarten).

Ausführungen nach anderen Normen, Vorschriften bzw. Richtlinien (z.B. EAC, VIK oder DNV-GL) sind auf Anfrage lieferbar.

Ex-geschützte Motoren Baureihe DEx

Grundierung / Lackierung

HEW-Motoren können mit unterschiedlichen Beschichtungssystemen geliefert werden. Die Motoren werden bevorzugt lackiert geliefert. Die Lackierung erfolgt nach einem Beschichtungssystem in Anlehnung an die Korrosivitätskategorien (DIN EN ISO 12944). Die Standardlackierung ist in Anlehnung an Korrosivitätskategorie C1 ausgelegt. Höherwertige Korrosivitätskategorien sind auf Anfrage möglich.

Die Standardfarbtöne von HEW sind folgende:

- RAL 5010 (enzianblau)
- RAL 7031 (blaugrau)
- RAL 6011 (resedagrün)

Vorzugsfarben in folgenden RAL Tönen können kurzfristig zur Verfügung gestellt werden:

- RAL 2003 (pastellorange)
- RAL 2004 (reinorange)
- RAL 3020 (verkehrsrot)
- RAL 5003 (saphirblau)
- RAL 5009 (azurblau)
- RAL 6018 (gelbgrün)
- RAL 7035 (lichtgrau)
- RAL 9005 (tiefschwarz)

Sonderfarbtöne nach unterschiedlichen Farbtabellen sind nach vorheriger Prüfung ebenfalls lieferbar. Bitte sprechen Sie uns im Bedarfsfall an.

Glanzgrade

Unser Standardglanzgrad ist hochglänzend.

Unser standardisierter Strukturlack ist ausschließlich in glänzend erhältlich.

Sonderglanzgrade sind nach vorheriger Prüfung lieferbar. Bitte sprechen Sie uns im Bedarfsfall an.

Eine grundierte Ausführung ist optional möglich.

Ex-geschützte Motoren Baureihe DEx

Zündschutzarten elektrischer Maschinen

Zündschutzart	Norm	Schutzgedanke	Anwendung bei der Art der
Kennbuchstabe			elektrischen Maschine
Druckfeste Kapselung "d"	DIN EN 60079-1 Betriebsmittel für Zone 1+2	Alle als Zündquelle wirkenden Teile sind von einem druckfesten Gehäuse umgeben, dessen unvermeidbare Dichtfläche als zünddurchschlagsichere Spalte ausgeführt ist, so dass bei der Explosion einer explosionsfähigen Atmosphäre im Innern des Gehäuses diese nicht auf die das Gehäuse umgebende Ex-Atmosphäre übertragen wird.	Alle Motorarten z.B.: - Kurzschlussläufermotoren - Schleifringläufermotoren - Kollektormotoren Für alle Betriebsarten S1 bis S10, für alle erschwerten Anlaufbedingungen und drehzahlregelbaren Antriebe
Erhöhte Sicherheit "e"	DIN EN 60079-7 Betriebsmittel für Zone 1+2	Hier sind Maßnahmen zu treffen, die mit Sicherheit die Entstehung von Funken, Lichtbögen und unzulässiger Erwärmung vermeiden bei ordnungsund bestimmungsgemäßen Anwendung des Betriebsmittels.	Nur Kurzschlussläufermotoren mit angepasstem Motorschutzschalter. Die angegebenen t _E – Zeiten sind einzuhalten.
Zündschutzart "ec"	DIN EN 60079-15 Betriebsmittel für Zone 2	Betriebsmäßig treten keine Funken, Lichtbögen oder unzulässige Temperaturen auf. Treten im Innern des Betriebsmittels Funken, Lichtbögen oder unzulässige Temperaturen auf, sind die Gehäuse einschließlich des Anschlusskastens in der Schutzart IP54 auszuführen, die bei einem Überdruck von 4 mbar mehr als 30 s benötigen um auf 2 mbar abzusinken (schwadensicher) oder die Gehäuse und der Anschlusskasten sind auf einfache Weise überdruckgekapselt.	Alle Motorarten z.B.: - Kurzschlussläufermotoren - Schleifringläufermotoren - Kollektormotoren usw. mit Motorschutzschalter und Überwachung des Überdruckes. Verhinderung des Austrittes der betriebsmäßig erzeugten Funken. Siehe Herstellerangaben zu diesen Maßnahmen.
Staubschutz "t"	DIN EN 60079-31 Betriebsmittel für Zone 21+22	Die Zündschutzart basiert auf der Begrenzung der maximalen Oberflächentemperatur des Gehäuses und auf der Einschränkung des Staubeintrittes durch die Verwendung "staubdichter" oder "staubgeschützter" Gehäuse.	Alle elektrischen Motoren mit Schutz durch Gehäuse mit Begrenzung der Oberflächentemperatur.

Gas - Explosionsschutz

Zündtemperatur - Temperaturklasse

Vielfältige Faktoren, wie Größe, Gestalt, Art und Beschaffenheit der Oberfläche beeinflussen die Zündtemperatur. IEC; CENELEC und andere Normengremien haben sich auf ein in der IEC 60079-20-1 festgelegtes Verfahren zur Ermittlung der Zündtemperatur verständigt, das dem niedrigsten praktisch möglichen Wert sehr nahe kommt.

Danach teilt man die Gase und Dämpfe in Temperaturklassen ein. Gemäß diesen Temperaturklassen werden elektrische Betriebsmittel und andere technologische Einrichtungen in ihren Oberflächentemperaturen so ausgelegt, dass eine Oberflächentemperaturentzündung ausgeschlossen ist. In den Normen sind zulässige Überschreitungen und zwingende Unterschreitungen dieser Regelwerte differenziert festgelegt.

Die Normalausführung der Motoren entspricht der höchsten Gruppe IIC und der Temperaturklasse T4, die alle niedrigeren Gruppen und Temperaturklassen einschließen. Motoren der Temperaturklasse T4 geben – bezogen auf die Baugröße – die gleiche Leistung ab wie nicht explosionsgeschützte Normmotoren. Auf Kundenwunsch sind die Motoren auch in den Temperaturklassen T5 und T6 lieferbar. Hier muss mit Rücksicht auf die zulässige Gehäusetemperatur ggf. die Bemessungsleistung angepasst werden.

Temperaturklasse	Zündtemperaturbereich der Mischung	Zulässige Oberflächentemperatur der elektrischen Betriebsmittel	Zulässiger Temperaturanstieg
T1	> + 450 °C	+ 400 °C	+ 410 °C
T2	> + 300≤ + 450°C	+ 300 °C	+ 260 °C
T3	> + 200≤ + 300°C	+ 200 °C	+ 160 °C
T4	> + 135≤ + 200°C	+ 135 °C	+ 95 °C
T5	> + 100≤ + 135°C	+ 100 °C	+ 60 °C
T6	> + 85≤ + 100°C	+ 85 °C	+ 45 °C

Beispiele der Zuordnung von Gasen und Dämpfen zu Temperaturklassen und Explosionsuntergruppen

	T1	T2	Т3	T4	T5	Т6
IIA	Methan	Propan	Benzin	Acetaldehyd		
IIB		Ethylen	Diäthylether			
IIC	Wasserstoff	Acetylen				Schwefel- kohlenstoff

Staub-Explosionsschutz Oberflächentemperatur - Schutzart

Ein wesentliches Merkmal des Staubexplosionsschutzes ist die IP-Schutzart. Abhängig von den Umgebungsbedingungen werden unterschiedliche Anforderungen an die Staubdichtheit des Motors gestellt. Wichtig für den Staubexplosionsschutz ist auch die Begrenzung der Oberflächentemperatur der Motoren auf einen Wert, der unter der Zünd- und Glimmtemperatur des vorkommenden Staubes liegt.

Einsatzort	Vorhandensein einer explosionsfähigen Staubatmosphäre	gelegentlich	selten oder kurzzeitig	selten oder kurzzeitig
	Staubart	alle Arten	leitend	nicht leitend
	Zone	21	22	22
	Gerätegruppe	II	II	II
	Gerätekategorie	2D	3D	3D
	Schutzart	IP6X	IP6X	IP5X
Betriebsmittel	Temperatur	max. 135°C	max. 135°C	max. 135°C
Detriebsimiter	Gehäusetemperatur			
	Bescheinigung	EG-Baumusterprüf-	EG-	EG-
		bescheinigung	Konformitätserklärung	Konformitätserklärung
		der Prüfstelle	des Herstellers	des Herstellers

Zulässiger Einsatz von Motoren entsprechend ihrer Kennzeichnung in Abhängigkeit von der Zoneneinteilung

	Geräte- kategorie	Zoneneinteilung	Definition nach BetrSichV	Zertifizierungs- pflicht
		Für brennbare G	ase, Dämpfe und Nebel	
II	1G*	0	Zone 0 umfasst Bereiche, in denen eine explosionsfähige Atmosphäre, die aus einem Gemisch von Luft und Gasen, Dämpfen oder Nebel besteht, ständig, langzeitig oder häufig vorhanden ist.	Ja
II	2G	1	Zone 1 umfasst Bereiche, in denen damit zu rechnen ist, dass eine explosionsfähige Atmosphäre aus Gasen, Dämpfen oder Nebel gelegentlich auftritt.	Ja
II	3G	2	Zone 2 umfasst Bereiche, in denen nicht damit zu rechnen ist, dass eine explosionsfähige Atmosphäre aus Gasen, Nebel oder Dämpfen auftritt. Tritt sie dennoch auf, dann aller Wahrscheinlichkeit nach nur selten und für einen kurzen Zeitraum.	Nein
		Für brennbare St	äube	
II	1D*	20	Zone 20 umfasst Bereiche, in denen eine explosionsfähige Atmosphäre, die aus einem Staub/Luft-Gemisch besteht, ständig, langzeitlich oder häufig vorhanden ist.	Ja
II	2D	21	Zone 21 umfasst Bereiche, in denen damit zu rechnen ist, dass eine explosionsfähige Atmosphäre aus Staub/Luft-Gemischen gelegentlich auftritt.	Ja
II	3D	22	Zone 22 umfasst Bereiche, in denen nicht damit zu rechnen ist, dass eine explosionsfähige Atmosphäre durch aufgewirbelten Staub auftritt. Tritt sie dennoch auf, dann aller Wahrscheinlichkeit nach nur sehr selten und für einen kurzen Zeitraum.	Nein

^{*}für Elektromotoren nicht üblich

Aufrechterhaltung des Explosionsschutzes

Aufrechterhaltung des Explosionsschutzes während des Betriebs:

Elektrische Maschinen müssen gegen Überhitzung aufgrund von Überlastungen geschützt werden. Der Motorschutz hängt sowohl von der Betriebsart als auch von der elektrischen Maschine und deren Verwendung ab.

Die Überwachungseinrichtungen für die Motoren müssen den Anforderungen nach der Richtlinie 2014/34/EU und EN 1127-1 genügen.

Betriebsart	Motorschutz						
S1	Motorschutzschalter gemäß DIN EN 60034-1; DIN EN 60079-14 Motorschutzschalter und als zusätzlicher Schutz Temperaturfühler in der Wicklung						
S2	Motorschutzschalter mit Einschaltzeitschalter und/oder Temperaturfühler in der Wicklung als zusätzlicher Schutz						
	Als Hauptschutz nur Temperaturfühler in der Wicklung (nur zulässig mit zugelassenen Steuergeräten/Auslösegeräten)						
S3 – S9	Als Hauptschutz nur Temperaturfühler in der Wicklung (nur zulässig mit zugelassenen Steuergeräten/Auslösegeräten)						

Definition der Betriebsarten gemäß DIN EN 60034-1

Explosionssichere Elektromotoren

Explosionsgeschützte (druckfestgekapselte) Motoren kommen in Industrieanlagen, in denen explosionsfähige, entzündliche Schwaden (Dämpfe), Gase oder Stäube enthaltende Atmosphären vorkommen können (z.B. in der chemischen Industrie, Ölraffinerien, usw.) zum Einsatz.

Es handelt sich um Drehstrom-Asynchronmotoren mit Kurzschlussläufer gemäß der Norm DIN EN 60079 (Gasexplosionsschutz) und (Staubexplosionsschutz).

Die Gehäuse der Motoren sind als druckfeste Kapselung gemäß DIN EN 60079-1 ausgeführt. Die Klemmenkästen können ebenfalls "druckfest gekapselt" gemäß DIN EN 60079-1 oder aber in "erhöhter Sicherheit" gemäß DIN EN 60079-7 ausgeführt werden.

Bei der Auslegung, Fertigung und Prüfung der Elektromotoren sind die folgenden Normen und Vorschriften berücksichtigt worden:

Titel	IEC	EN-	DIN
(drehende elektrische Maschinen)	International	CENELEC Europa	Deutschland
Bemessung und Betriebsverhalten	IEC 60034-1	EN 60034-1	DIN EN 60034-1
Schutzarten aufgrund der Gesamtkonstruktion von drehenden elektrischen Maschinen (IP- Code) – Einteilung	IEC 60034-5	EN 60034-5	DIN EN 60034-5
Einteilung der Kühlverfahren (IC- Code)	IEC 60034-6	EN 60034-6	DIN EN 60034-6
Klassifizierung der Bauarten, der Aufstellungsarten und der Klemmenkasten-Lage (IM-Code)	IEC 60034-7	EN 60034-7	DIN EN 60034-7
Anschlussbezeichnung und Drehsinn	IEC 60034-8	EN 60034-8	DIN EN 60034-8
Geräuschgrenzwerte	IEC 60034-9	EN 60034-9	DIN EN 60034-9
Anlaufverhalten von Drehstrommotoren mit Käfigläufer, ausgenommen polumschaltbare Motoren	IEC 60034-12	EN 60034-12	DIN EN 60034- 12
Mechanische Schwingungen von bestimmten Maschinen mit einer Achshöhe von 56 mm und höher – Messung, Bewertung und Grenzwerte der Schwingstärke	IEC 60034-14	EN 60034-14	DIN EN 60034- 14
Wirkungsgrad-Klassifizierung von Drehstrommotoren mit Käfigläufer, ausgenommen polumschaltbare Motoren (IEC-Code)	IEC 60034-30	EN 60034-30	DIN EN 60034- 30
Drehstromasynchronmotoren für den Allgemeingebrauch mit standardisierten Abmessungen und Leistungen	IEC 60072-1 *	EN 50347 *	DIN EN 50347 *
Elektrische Betriebsmittel für explosionsgefährdete Bereiche – Allgemeine Bestimmungen	IEC 60079-0	EN 60079-0	DIN EN 60079-0
Elektrische Betriebsmittel für explosionsgefährdete Bereiche – Druckfeste Kapselung "d"	IEC 60079-1	EN 60079-1	DIN EN 60079-1
Elektrische Betriebsmittel für explosionsgefährdete Bereiche – Erhöhte Sicherheit "e"	IEC 60079-7	EN 60079-7	DIN EN 60079-7
Elektrische Betriebsmittel zur Verwendung in Bereichen mit brennbarem Staub – Schutz durch Gehäuse	IEC 60079-31	EN 60079-31	DIN EN 60079- 31

^{*} Gilt nur für Abmessungen und Baugrößen

Ex-geschützte **Motoren Baureihe DEx** Mechanische Ausführung

Bauformen

Übersicht von Bauform- und IM Code (International Mounting) nach DIN EN 60034-7 der am häufigsten verwendeten Ausführungen.

horizontale Welle	vertikale Welle		vertikale Welle			
IM Code II	IM Code I	IM Code II	IM Code I	IM Code II		
IM B3 IM 1001	IM V5	IM 1011	IM V6	IM 1031		
IM B5 IM 3001	IM V1	IM 3011	IM V3	IM 3031		
IM B14 🗐 IM 3601	IM V18	IM 3611	IM V19	IM 3631		
IM B35 🖃 IM 2001	IM V15	IM 2011	IM V35	IM 2031		
IM B34 🖃 IM 2101	IM V17	IM 2111	IM V37	IM 2131		

Die Bauformen von Elektromotoren und ihre Symbole entsprechen den Normen DIN EN 60034-7. Unsere Motoren stehen in den Grundbauformen IM B3; IM B5 und IM B14 zur Verfügung.

Die Tabelle in dem Abschnitt Bauformen zeigt die Symbole und Aufbaumöglichkeiten der bei uns hergestellten Standardmodelle. Die Motoren vom Typ IM B3 können auch in den IM B6, IM B7 und IM B8 Montagepositionen betrieben werden. Neben den nach Norm zugeordneten Flanschgrößen kann eine Vielzahl anderer Flanschdurchmesser geliefert werden (siehe Abschnitt Flanschvarianten)

Bei allen vertikalen Bauformen mit Wellenende nach unten oder oben muss das Eindringen von Tropfwasser oder das Hereinfallen von Fremdkörpern verhindert werden. Bei Bauformen mit Wellenenden nach unten, geschieht dieses üblicherweise unter Verwendung eines Schutzdaches. Dieser Schutz ist allerdings nicht notwendig, wenn die Maschine selbst mit einer solchen Schutzvorrichtung versehen ist.

Im Freien montierte Motoren müssen gegen direkte Sonneneinstrahlung geschützt werden.

IP Schutzarten

Die Schutzarten umlaufender elektrischer Maschinen werden nach DIN EN 60034-5 durch ein Kurzzeichen angegeben, das aus den Kennbuchstaben IP (International Protection) und zwei Kennziffern zusammengesetzt ist.

- 1. Kennziffer (0 bis 6): Schutzgrade für den Berührungs- und Fremdkörperschutz.
- 2. Kennziffer (0 bis 8): Schutzgrade für den Wasserschutz.

Die Motoren sind in der Schutzart IP 55 ausgeführt. Auf Wunsch können auch Motoren mit einer höheren Schutzart geliefert werden.

Schutz gegen Feststoffe und Flüssigkeiten: IP Schutzart

Schutzart	Schutz gegen Berührung und das Eindringen fester Stoffe (erste Ziffer)
IP 55 / IP 56	Vollständiger Schutz gegen das Berühren von unter Spannung stehenden sowie sich bewegenden inneren Teilen.
	Schutz gegen das Eindringen von Staub:
	Das Eindringen von Staub wird nicht vollständig verhindert, darf aber nicht solche Ausmaße annehmen, die den Betrieb der Maschine beeinträchtigen.
IP 65	Vollständiger Schutz gegen das Berühren von unter Spannung stehenden sowie sich bewegenden inneren Teilen.
	Eindringen von Staub ist vollständig verhindert.

Schutzart	Schutz gegen das Eindringen von Wasser (zweite Ziffer)
IP 55 / IP 65	Der Motor ist gegen Strahlwasser aus allen Richtungen geschützt.
IP 56	Maschine geschützt gegen schwere See. Wasser durch schwere Seen oder Wasser in starkem Strahl darf nicht in schädlichen Mengen in das Gehäuse eindringen.

Weitere Schutzarten auf Anfrage lieferbar.

Ex-geschützte **Motoren Baureihe DEx** Gehäuseausführungen

Bei der Herstellung und Prüfung der Motoren berücksichtigte Normen zum Explosionsschutz.

Norm	IEC international	Deutschland / Europa
Elektrische Geräte in explosionsgefährdeten Bereichen Standardversion	IEC 60079-0	DIN EN 60079-0
Elektrische Geräte für den Betrieb im Ex-Bereich Druckfeste Kapselung "d"	IEC 60079-1	DIN EN 60079-1
Elektrische Geräte für den Betrieb im Ex-Bereich Erhöhte Sicherheit "e"	IEC 60079-7	DIN EN 60079-7

Aufbau

Die Elektromotoren sind vollständig gekapselt und eigenbelüftet (mit Lüfter) ausgeführt. Die Kühlwirkung wird durch die von dem Lüfter über die äußere, gerippte Oberfläche geführte Außenluft erzielt (Kühlsystem IC 411 nach DIN EN 60034-6). Die Motoren sind mit Graugussgehäuse ausgeführt.

Baugröße	Statorgehäuse		Lagerschilde	Klemmenkasten
63	Gusseisen, Füße anschraubbar,			
71	(an das Statorgehäuse Klemmenkasten)	angegossener		
80				
90	1			
100				
112	7		Gusseisen	
132	1		B 5, B 14	Gusseisen
160	Gusseisen, Füße anschraubbar		anschraubbar	
180	(Klemmenkasten separat, drehbar)			
200	7			
225	7			
250	1			
280	7			
315	1			

Flanschvarianten

Flanschvarianten

Alle Motortypen der Baugrößen 63 bis 250 wurden mit anschraubbaren Flanschen und/oder Füßen konzipiert, um kurze Lieferzeiten zu realisieren. Außerdem können so auch, ausgehend von einem Grundmotor, alle nach DIN EN 60034-7 möglichen Bauformen realisiert werden.

Lieferbare Flansche

Baugröße	FF-F	FF-Flansche Ø in mm ⁽¹⁾								FT-Flansche Ø in mm ⁽¹⁾							
	115	130	165	215	265	300	350	400	500	600	75	85	100	115	130	165	215
	A-Fl	-Flansche Ø in mm ⁽²⁾									C-F	lansc	he Ø	in mn	າ ⁽²⁾		
	140	160	200	250	300	350	400	450	550	660	90	105	120	140	160	200	250
63	Х	0									Χ	0	0				
71		Х	0								0	Х	0	0	0		
80		0	Х								0	0	Х	0	0		
90		0	Х								0	0	0	Х	0		
100			0	Х										0	Χ	0	
112			0	Х										0	Χ	0	
132				0	Χ											Х	0
160					0	Х											Х
180					0	Х											0
200					0	0	Х										
225							0	Х	0								
250								0	Х	0							
280								0	Х	0							
315									0	Х							

X = Zuordnung nach Norm

0 = Sonderflansch

Weitere Flanschvarianten auf Anfrage lieferbar.

Hinweis

1) neue Kennzeichnung nach DIN EN 50347

2) alte Kennzeichnung nach DIN 42948

Lagerung

In der folgenden Tabelle sind die bei den verschiedenen Motoren verwendeten Lager zusammengestellt. Bei 4, 6 und 8- poligen Motoren haben die Lager, wenn die in den Tabellen angegebenen Belastungswerte nicht überschritten werden, eine Lebensdauer von ca. 20 000 Stunden.

Zum Einsatz kommen nur hochwertige Lager von Markenherstellern. Auf Wunsch des Kunden rüsten wir die Motoren (abhängig von der jeweiligen Konstruktion) auch mit anderen Lagerarten und Lagergrößen aus.

Bei den Baugrößen 63 bis 250 werden die Lager in der Standardausführung auf der D- Seite (Antriebsseite) und bei den Baugrößen 280 bis 315 auf der N-Seite (Nichtantriebsseite) als Festlager ausgeführt.

Lager

Baugröße	Pole	Lager DS	Lager NS	Dichtring
63	2-8	6201 2Z C3	6201 2Z C3	12 x 32 x 7
71	2-8	6203 2Z C3	6203 2Z C3	17 x 40 x 7
80	2-8	6204 2Z C3	6204 2Z C3	20 x 47 x 7
90	2-8	6205 2Z C3	6205 2Z C3	25 x 52 x 7
100	2-8	6206 2Z C3	6206 2Z C3	30 x 62 x 7
112	2-8	6206 2Z C3	6206 2Z C3	30 x 62 x 7
132	2-8	6208 2Z C3	6208 2Z C3	40 x 80 x 10
160	2-8	6309 2Z C3	6309 2Z C3	45 x 80 x 10
180	2-8	6310 2Z C3	6310 2Z C3	50 x 72 x 10
200	2-8	6312 2Z C3	6312 2Z C3	60 x 80 x 10
225	2-8	6313 2Z C3	6313 2Z C3	65 x 90 x 10
250	2-8	6314 2Z C3	6314 2Z C3	70 x 110 x 13
280	2-8	6316 2Z C3	6316 2Z C3	80 x 105 x 13
315	2-8	6317 2Z C3	6317 2Z C3	85 x 115 x 13

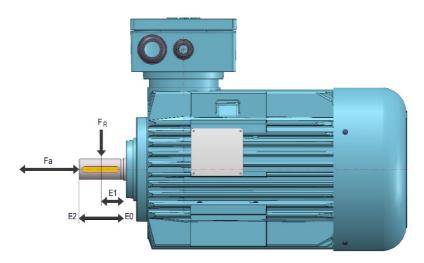
Motoren mit Rollenlager ab Baugröße 160 lieferbar Motoren mit isolierten Lagern lieferbar

Wellenenden

Die Wellenenden sind zylindrisch und entsprechen in ihrer Ausführung DIN EN 50347, in ihrer Zuordnung zu den Baugrößen und Leistungen DIN 42673 Teil 3.

Bei allen Motoren ist das DS-Wellenende mit einer Zentrierbohrung nach DIN 332 Teil 2 Form D versehen. Im NS-Wellenende ist eine Zentrierbohrung nach DIN 332 Teil 1. Die Paßfedern sind nach DIN 6885 Teil 1 ausgeführt und werden stets mit den Motoren geliefert. Die Ausführung mit einem zweiten freien Wellenende ist auf Anfrage lieferbar.

bis Ø 28 mm: j6 (ISO)


- ab Ø 28 mm bis Ø 50 mm: k6 (ISO)

- ab Ø 50 mm: m6 (ISO)

Wellen- durchmesser	11 mm	14 mm	19 mm	24 mm	28 mm	38 mm	Von 42 bis 48 mm	Von 55 bis 80 mm
Innengewinde	M5	M5	M6	M8	M10	M12	M16	M20

Radial- und Axialkräfte

Zulässige Lasten am freien Wellenende

Die Nennlast der Lager ist für eine Lebensdauer von mindestens 20 000 Stunden bei einer Frequenz von 50 Hz berechnet. Es sind nur Axiallasten berücksichtigt worden. Bei kombinierter Axial- und Radialbelastung ergibt sich eine kürzere Lebensdauer der Lager.

Maximale Axialbelastung

Geräte-	IM B7	IM B8	IM B14	IM B34	IM V18	IM V19	IM V 1 IN	M V3 IM V	/5 IM V6			
anordnung	IM B3	IM B35	IM B5	IM B6	Gewich Lastric	nt der Rot	orwelle in		l l	ht der R strichtung		entgeger
	2-	4-	6-	8-	2-	4-	6-	8-	2-	4-	6-	8-
	polig	polig	polig	polig	polig	polig	polig	polig	polg	polig	polig	polig
63	0,26	0,26	0,31	0,34	0,27	0,27	0,32	0,35	0,13	0,13	0,15	0,17
71	0,27	0,34	0,39	0,43	0,33	0,43	0,47	0,52	0,35	0,46	0,51	0,55
80	0,36	0,45	0,52	0,57	0,43	0,55	0,62	0,69	0,47	0,60	0,69	0,76
90	0,41	0,51	0,59	0,65	0,48	0,61	0,69	0,77	0,54	0,68	0,79	0,86
100	0,55	0,69	0,79	0,88	0,64	0,81	0,92	1,03	0,75	0,94	1,07	1,11
112	0,55	0,69	0,79	0,88	0,63	0,77	0,89	1,00	0,76	0,98	1,10	1,14
132	0,83	1,04	1,20	1,32	0,92	1,13	1,30	1,48	1,16	1,47	1,67	1,82
160	1,52	1,91	2,19	2,41	1,65	2,10	2,40	2,65	2,13	2,68	3,08	3,31
180	1,77	2,24	2,56	2,82	1,85	2,30	2,71	3,00	2,55	3,26	3,74	4,13
200	2,23	2,94	3,37	3,71	2,39	3,06	3,54	3,89	3,45	4,38	4,91	5,50
225	2,66	3,36	3,85	4,23	2,71	3,30	3,78	4,25	4,03	5,05	5,94	6,28
250	2,98	3,76	4,30	4,73	2,92	3,85	4,07	4,48	4,62	5,55	6,81	7,46
280	3,50	4,41	5,05	5,56	3,18	3,76	4,52	4,82	5,51	7,13	7,94	8,89
315	3,58	4,51	5,17	5,69	2,33	2,31	2,01	2,55	6,09	8,15	9,34	10,05

Maximale Radialbelastung

Baugröße	Anzahl der Pole	Radialkraft F _R [kN]					
		E ₀	E ₁	E ₂			
	2	0,39	0,36	0,34			
00	4	0,39	0,36	0,34			
63	6	0,44	0,41	0,38			
	8	0,49	0,45	0,42			
	2	0,48	0,43	0,39			
74	4	0,60	0,54	0,50			
71	6	0,69	0,62	0,56			
	8	0,76	0,68	0,62			
	2	0,64	0,57	0,51			
80	4	0,81	0,72	0,65			
00	6	0,93	0,83	0,74			
	8	1,02	0,91	0,82			
	2	0,72	0,64	0,57			
00	4	0,90	0,80	0,71			
90	6	1,04	0,92	0,82			
	8	1,14	1,01	0,90			
	2	1.01	0,9	0,81			
100	4	1,28	1,15	1,04			
100	6	1,45	1,30	1,17			
	8	1,61	1,43	1,30			
	2	0,99	0,87	0,79			
440	4	1,23	1,09	1,08			
112	6	1,42	1,25	1,12			
	8	1,57	1,39	1,24			
	2	1,56	1,38	1,23			
400	4	1,96	1,78	1,55			
132	6	2,24	1,98	1,77			
	8	2,45	2,16	1,96			
	2	2,99	2,63	2,35			
400	4	3,83	3,38	3,02			
160	6	4,33	3,81	3,40			
	8	4,79	4,22	3,78			
	2	3,55	3,14	2,84			
400	4	4,43	3,82	3,53			
180	6	5,10	4,52	4,08			
	8	5,63	5,00	4,52			
	2	4,33	4,24	3,60			
200	4	4,45	4,95	4,52			
200	6	6,28	5,71	5,23			
	8	6,88	6,25	5,72			
	2	10,40	9,45	8,32			
225	4	13,10	11,65	10,49			
225	6	15,03	13,37	12,03			
	8	16,60	14,78	13,39			
	2	11,64	10,41	9,4			
250	4	14,77	13,22	11,96			
200	6	16,97	15,20	13,75			
	8	18,73	16,78	15,19			
	2	14,52	13,03	11,80			
280	4	18,18	16,31	14,76			
200	6	20,93	18,78	17,02			
	8	22,93	20,56	18,62			
	2	16,55	14,92	13,57			
215	4	20,62	18,57	16,86			
315	6	19,73	17,58	15,82			
	The state of the s	*					

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Lagerschmierung

Die Motoren sind in der Standardausführung mit dauergeschmierten Lagern ausgerüstet. Jegliche Abweichung von der Motornennbetriebstemperatur, beeinflusst die Lebensdauer der Lager. (Bei extremen Einsatzbedingungen sind die Empfehlungen des Herstellers zu beachten)

Motoren mit Nachschmiereinrichtung:

Die Motoren ab Baugröße 160 können mit einer Nachschmiereinrichtung ausgerüstet werden. Bei diesen Motoren müssen die angegebenen Nachschmierintervalle eingehalten und die genannten Fettsorten verwendet werden. Nach erfolgter Nachschmierung sollte ein lastfreier Fettverteilungslauf erfolgen.

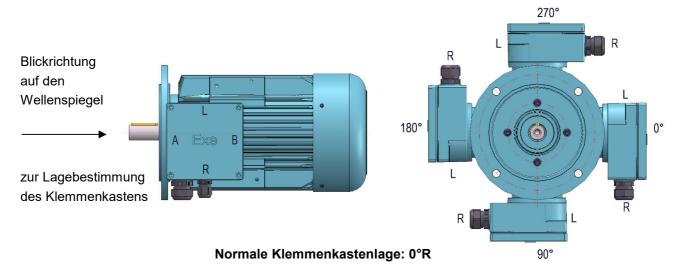
Die Wirksamkeit der Lagerschmierung sollte durch Messung der Temperatur am Lagerschild bei laufendem Motor überprüft werden. Falls die gemessene Temperatur + 80 Grad C überschreitet, müssen die Nachschmierintervalle verkürzt werden. Nachschmierintervalle sollten demnach für jede 15 K im Temperaturanstieg halbiert werden. Falls dieses nicht möglich ist, sollten spezielle Schmierstoffe für sehr hohe Betriebstemperaturen benutzt werden.

Kugellager Schmierung – Intervalle in Betriebsstunden

Baugröße	Fettmenge	Drehzahl [m	Drehzahl [min ⁻¹]						
	[g]	3600	3000	1800	1500	1000	500		
160	25	7000	9500	14000	17000	21000	24000		
180	30	6000	8000	13500	16000	20000	23000		
200	40	4000	6000	11000	13000	17000	21000		
225	50	3000	5000	10000	12500	16500	20000		
250	60	2500	4000	9000	11500	15000	18000		
280	70	2000	3500	8000	10500	14000	17000		
315	90	2000	3500	6500	8500	12500	16000		

Rollenlager Schmierung - Intervalle in Betriebsstunden

Baugröße	Fettmenge	Drehzahl [m	Drehzahl [min ⁻¹]						
	[g]	3600	3000	1800	1500	1000	500		
160	13	3500	4300	7000	8500	10500	12000		
180	15	3000	4000	6800	8000	10000	11500		
200	20	2000	3000	5500	6500	8500	10500		
225	25	1500	2500	5000	6300	8300	10000		
250	30	1300	2000	4500	5500	7500	9000		
280	35	1000	1800	4000	5300	7000	8500		
315	45	1000	1700	3000	4300	6000	8000		



Klemmenkastenlage und Kabeleinführungen

Die Position der Klemmenkastenlage und der Kabeleinführungen im Klemmenkasten ist gemäß nachfolgender Tabelle lieferbar:

Baugröße	Ausführung	Standard- ausführung	Sonder- ausführung	Ausführung	Standard- ausführung	Sonder- ausführung
00	F. 0		•	Florida	Ū	•
63	Fuß	270°B, L, R	auf Anfrage	Flansch	0°B, L, R	auf Anfrage
71	Fuß	270°B, L, R	auf Anfrage	Flansch	0°B, L, R	auf Anfrage
80	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
90	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
100	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
112	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
132	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
160	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
180	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
200	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
225	Fuß	270°R	270° A, B, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
250	Fuß	270°R	0° A, B, R, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
						180° A, B, R, L / 270° A, B, R, L
280	Fuß	270°R	0° A, B, R, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
			180° A, B, R, L			180° A, B, R, L / 270° A, B, R, L
			270° A, B, L			
315	Fuß	270°R	0° A, B, R, L	Flansch	0° R	0° A, B, L / 90° A, B, R, L
			180° A, B, R, L			180° A, B, R, L / 270° A, B, R, L
			270° A, B, L			

Klemmenkästen des Typs Ex e sind mit Gewindebohrungen (laut Tabelle) und mit den dazugehörigen Ex e-Kabel-verschraubungen ausgestattet.

Klemmenkästen des Typs Ex d werden standardmäßig mit den Gewindebohrungen (laut Tabelle) ausgeliefert. Die Kabelverschraubungen gehören nicht zum Lieferumfang (andere Gewinde auf Anfrage).

Baugröße	Klemmen	Kabeleinführungen für Leistungskabel					
	Für Anschlusskabel mit max.	Ex e Gehäuse		Ex d Gehäuse			
	Querschnitt (mm²)	Gewindebohrung	Außendurchmesser des Anschlusskabels (mm)	Gewindebohrung			
63	2,5	4 x M20 x 1,5	6,5 bis 12	4 x M20 x 1,5			
71	2,5	4 x M20 x 1,5	6,5 bis 12	4 x M20 x 1,5			
80 90 100	4	1 x M25 x 1,5 1 x M20 x 1,5	13 bis 18 6,5 bis 12	1 x M25 x 1,5 1 x M20 x 1,5			
112	4	1 x M32 x 1,5 1 x M20 x 1,5	13 bis 18 6,5 bis 12	1 x M32 x 1,5 1 x M20 x 1,5			
132	4	2 x M32 x 1,5 1 x M20 x 1,5	13 bis 18 6,5 bis 12	2 x M32 x 1,5 1 x M20 x 1,5			
160 180	16	2 x M40 x 1,5 1 x M20 x 1,5	22 bis 32 6,5 bis 12	2 x M40 x 1,5 1 x M20 x 1,5			
200 225	16	2 x M50 x 1,5 1 x M20 x 1,5	32 bis 38 6,5 bis 12	2 x M50 x 1,5 1 x M20 x 1,5			
250 280 315	95-300	2 x M63 x 1,5 1 x M20 x 1,5	37 bis 44 6,5 bis 12	2 x M63 x 1,5 1 x M20 x 1,5			

Zusätzliche Bohrungen für Kabelverschraubungen können auf Anfrage geliefert werden.

Bei Sonderausführungen (z.B. Stillstandsheizung) werden die Motoren mit einer zusätzlichen Kabeleinführung M20 x 1,5 ausgestattet.

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Geräusche

Geräuschpegel:

Der Geräuschpegel der Motoren liegt unter den, nach DIN EN 60034-9, für außenlüftergekühlte Motoren zulässigen Werten.

Maximal zulässiger Geräuschpegel L in dB (Abstand ein Meter von der Motoroberfläche)

Werte für oberflächengekühlte Motoren Drehzahl [min-1] Nennleistung P [kW] 600< n ≤ 960 960< n ≤1320 1320< n ≤1900 1900< n ≤2360 2360< n ≤3150 3150< n ≤3750 P ≤ 1,1 $1,1 < P \le 2,2$ $2,1 < P \le 5,5$ 5,5 < P ≤ 11 11< P ≤ 22

Schwingungen

22< P ≤ 37

37 < P ≤ 55

55 < P ≤ 110

110 < P ≤ 220

Die Läufer der Motoren sind mit montiertem Lüfter und halber Passfeder dynamisch gewuchtet. Die Schwingungsamplitude entspricht dem Grad A (normal) gemäß DIN EN 60034-14.

Schwingungsgrenzwerte [mm/s] Drehzahl [min ⁻¹]: 600 bis 3600								
Grad	Maschinen-		Achshöhe					
Giau	aufstellung	56 bis 132	160 bis 280	315				
Α	freie Aufhängung	1,6	2,2	2,8				
(normal)	starre Aufspannung	1,3	1,8	2,3				
В	freie Aufhängung	0,7	1,1	1,8				
(reduziert)	starre Aufspannung	-	0,9	1,5				

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Ex-geschützte **Motoren Baureihe DEx** Elektrische Ausführung

Leistung, Spannung und Frequenz

Die in den technischen Tabellen angegebenen Daten beziehen sich auf den Dauerbetrieb (S1 gemäß DIN EN 60034-1) der Motoren bei Bemessungsspannung, Bemessungsfrequenz, Kühlmitteltemperatur bis + 40°C und einer Aufstellungshöhe ≤ 1000 m über NN.

Spannungsschwankungen bis ± 5 % und Frequenzschwankungen bis ± 2 % sind zulässig. Innerhalb dieses Toleranzbereichs bleiben die Leistungsdaten unverändert und die maximal zulässige Temperatur der Wicklung wird nicht überschritten.

Auf Wunsch können auch Motoren für Bemessungsspannungen von 110V bis 690V und Bemessungsfrequenzen von 50Hz oder 60Hz geliefert werden. Die für Spannungen von 380V, 400V und 415V und eine Frequenz von 50Hz ausgelegten Motoren können auch mit Spannungen im Bereich von 440V und 480V bei einer Frequenz von 60 Hz betrieben werden. Hierbei kann die Belastung um 15% angehoben werden. Die Drehzahl liegt um etwa 20% höher, während das Anlauf- und das maximale Drehmoment um etwa 18% niedriger sind.

Bei der Auswahl der optimalen Motorleistung ist unter anderem Folgendes zu beachten:

Erforderliche Leistung der Arbeitsmaschinen; Betriebsart; Anlauf-, Brems- und Reversierbetrieb, Momentverlauf der Arbeitsmaschine; Netzverhältnisse (FU-Betrieb); Kühlung, Kühlmitteltemperatur; Aufstellungshöhe.

Erwärmung und Wärmeklassen

Die Wahl der einzelnen Komponenten des Isolationssystems bestimmt die Einordnung in die Wärmeklassen nach DIN EN 60034-1.

Die Ständerwicklungen der Motoren sind gemäß der Wärmeklasse F ausgelegt. Die Ständerwicklungen werden neben einem hochwertigen Lackdraht und Tränkharz grundsätzlich mit Phasenisolation gefertigt. Die dadurch erreichte hohe elektrische Festigkeit garantiert den problemlosen Einsatz der Motoren am Frequenzumrichter.

Auf Wunsch können, für den Einsatz unter extremen Betriebsbedingungen oder bei hoher Ein- und Ausschalthäufigkeit, auch Motoren mit einer für die Wärmeklasse H ausgelegten Wicklung, geliefert werden.

Schaltungen

Die Wicklungen der Motoren mit Nennleistungen bis 2,2kW sind für 400V-Sternschaltung ausgeführt. Motoren mit höheren Leistungen sind für 400V-Dreieckschaltung ausgeführt (Stern- Dreieck-Anlauf). Polumschaltbare Motoren mit einem Drehzahlverhältnis von 2:1 werden in Dahlander-Schaltung (getrennte Wicklung auf Anfrage möglich) ausgeführt. Andere Polzahlverhältnisse werden mit zwei getrennten Wicklungen in Sternschaltung ausgeführt.

Überlast

Die Motoren sind so ausgelegt, dass sie nach dem Erreichen ihrer Betriebstemperatur zwei Minuten lang mit einer Überlast von 1,5-fachem In belastet werden können, ohne dass es zu Schäden kommt.

Drehrichtung

Die Motoren sind generell für beide Drehrichtungen einsetzbar. Die Wicklungsenden U1, V1, W1 der Motoren sind so ausgeführt, dass sich bei Anschluss an das Drehstromnetz in der Reihenfolge L1, L2, L3 Rechtslauf ergibt. Durch Vertauschen zweier Außenleiter (z.B. L1 mit L2) wird Linkslauf erreicht. Die Drehrichtungsangabe gilt für die Blickrichtung auf den Wellenspiegel (DS).

Erdungs- und Schutzleiteranschluss

Die Motoren haben einen Schutzleiteranschluss im Klemmenkasten sowie eine zusätzliche äußere Erdungsklemme am Motorgehäuse.

Betrieb am Frequenzumrichter

Betrieb am Frequenzumrichter

Durch den Einsatz eines Frequenzumrichters lässt sich die Drehzahl von Drehstromasynchronmotoren über die Frequenz stufenlos einstellen bzw. regeln. Die sorgfältige Projektierung ist ausschlaggebend für eine optimale Anpassung von Umrichter und Motor.

Die druckfest gekapselten HEW-Motoren dürfen in folgenden Frequenzbereichen eingesetzt werden.

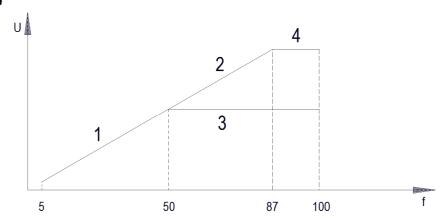
Motorbaugröße	zulässiger Frequenzbereich
63	5 Hz – 87 Hz
71 – 160	5 Hz – 100 Hz
180 – 315	5 Hz – 87 Hz

Als alleiniger Motorschutz muss der standardmäßig eingebaute Kaltleiter verwendet werden.

Die Motorauswahl richtet sich zunächst nach dem gewünschten Drehzahlbereich und dem Verlauf der Momentenkennlinie der Arbeitsmaschine. Dabei muss bei der Projektierung der kritischste Arbeitspunkt ermittelt werden. Danach werden Motorbaugröße und Polzahl ausgewählt. Der kritischste Arbeitspunkt wird häufig bei der kleinsten Frequenz liegen, da durch die verminderte Kühlung des eigenbelüfteten Motors eine Momentenreduzierung gegenüber dem Nennmoment notwendig wird. Er kann aber auch im Feldschwächbetrieb liegen, wenn der Motor in diesem Betrieb eingesetzt wird.

Wird beim Frequenzumrichter die Spannung mit der Frequenz proportional erhöht, bleibt der Fluss konstant und der Motor kann mit konstantem Moment betrieben werden (unter Beachtung der Momentenreduzierung durch die verminderte Kühlung bei kleinen Frequenzen). Bleibt die Spannung konstant und nur die Frequenz steigt an, so spricht man vom Feldschwächbetrieb und das Motormoment reduziert sich mit 1/f (Achtung: das Kippmoment verringert sich mit dem Quadrat von 1/f).

Die Vielzahl der Einflusskomponenten beim Umrichterbetrieb macht deutlich, dass eine sorgfältige Projektierung nicht nur für den einwandfreien Betrieb, sondern auch für eine kostenoptimale Lösung notwendig ist.


Im Kapitel **Ex-geschützte Drehstrommotoren, Betrieb am Frequenz-umrichter** sind die zulässigen Momente für die typischen Drehzahlbereiche für 2, 4, 6 und 8 polige Motoren dargestellt. Die Betriebsmöglichkeit der Motoren richtet sich nach der gewählten Spannungsausführung (230/400V bzw. 400/690V).

Für weitere Fragen steht Ihnen unsere technische Abteilung jederzeit zur Verfügung.

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Prinzipdarstellung

1	U/f konstant bis 50 Hz	Leistung steigt proportional mit der Drehzahl Motormoment gemäß Tabellen Ex-geschützte Drehstrommotoren, Betrieb am Frequenz-umrichter
2	U/f konstant von 50 Hz bis 87 Hz	Leistung steigt proportional zur Drehzahl Motormoment konstant
3	U konstant von 50 Hz bis 87 Hz	Leistung bleibt konstant, Motormoment sinkt mit 50/f
4	U konstant von 87 Hz bis 100 Hz	Leistung bleibt konstant, Motormoment sinkt mit 87/f

Motorschutz

Der Motorschutz muss entsprechend DIN EN 60079-14 und der Richtlinie 2014/34/EU erfolgen. Die Motoren sind gegen unzulässige Erwärmung, infolge von Überlastung, durch Motorschutzschalter oder durch gleichwertige Einrichtungen allpolig zu schützen. Als gleichwertige Schutzeinrichtung ist eine Wicklungstemperaturüberwachung durch Temperaturfühler, ggf. in Kombination mit einem zugelassenen Auslösegerät, anzusehen.

Der alleinige Schutz mittels Temperaturfühler ist vorgeschrieben bei allen von S1-Betrieb abweichenden Betriebsarten, wie Betrieb am Frequenzumrichter, Schaltbetrieb, Kurzzeitbetrieb, Schweranlauf usw.. Zudem ist ein Schutz bei verminderter Kühlluftströmung und/oder zu hoher Umgebungstemperatur gegeben.

Die druckfest gekapselten HEW-Motoren sind standardmäßig mit Kaltleitertemperaturfühler (PTC) ausgerüstet. Optional können die Motoren auch mit weiteren Temperaturfühlern z.B. Vorwarnung oder Thermoschalter (Bimetall-Fühler) ausgerüstet werden.

Kühlung (Belüftung)

Alle Motoren werden mit einem robusten und temperaturbeständigen Kunststofflüfter oder Aluminiumlüfter ausgerüstet.

Fremdbelüftung (IC 416):

Die Motoren ab der Baugröße 71 können optional mit einem Fremdlüfter ausgerüstet werden, um bei Schaltbetrieb bzw. Frequenzumrichterbetrieb die Ausnutzung zu erhöhen und/oder die Temperaturklasse einzuhalten.

Alle Fremdlüfter werden mit dreiphasigem Anschluss geliefert.

Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Aufstellungshöhe und Kühlmitteltemperatur

Für Kühlmitteltemperaturen abweichend von 40°C oder Aufstellhöhen über 1000m NN sind Leistungsreduzierungen erforderlich. Die Bemessungsleistung ist dann mit den Faktoren der nachstehenden Tabelle zu korrigieren.

Aufstellhöhe	Umgebungstemperatur in °C						
über NN	40	45	50	60			
1000 m	1,00	0,96	0,92	0,82			
1500 m	0,97	0,95	0,89	0,79			
2000 m	0,94	0,90	0,86	0,77			
2500 m	0,90	0,86	0,83	0,74			
3000 m	0,86	0,82	0,79	0,70			
3500 m	0,82	0,79	0,75	0,67			
4000 m	0,77	0,74	0,71	0,63			

In Sonderfällen können die Motoren bei Umgebungstemperaturen > 40°C ohne Leistungsreduzierung, nach Rücksprache mit dem Hersteller, betrieben werden.

Stillstandsheizung

Stillstandsheizung gegen Kondensat:

Zur Vermeidung von starker Betauung der Ständerwicklung bei großen Temperaturschwankungen und Lastwechseln, z.B. bei periodischen Stillstandszeiten, sollten die Motoren mit einer Stillstandsheizung ausgerüstet werden.

Stillstandsheizung bei Tieftemperaturbetrieb:

Bei einer Umgebungstemperatur von < -20°C ist eine Stillstandsheizung zwingend vorgeschrieben (Betrieb bis -50°C zulässig).

Während des Betriebs der Motoren darf die Stillstandsheizung nicht eingeschaltet sein.

Stills	tandsheizung gegen	Kondensat	Stillstand	lsheizung gegen Tieft	emperatur
Motor- baugröße	Heizleistung [W]	Anschluss- spannung* [V]	Motor- baugröße	Heizleistung [W]	Anschluss- spannung* [V]
63	12,5	230 ± 10%	63	12,5	230 ± 10%
71	12,5	230 ± 10%	71	12,5	230 ± 10%
80	25	230 ± 10%	80	25	230 ± 10%
90	25	230 ± 10%	90	25	230 ± 10%
100	25	230 ± 10%	100	50	230 ± 10%
112	50	230 ± 10%	112	50	230 ± 10%
132	50	230 ± 10%	132	50	230 ± 10%
160	50	230 ± 10%	160	75	230 ± 10%
180	75	230 ± 10%	180	150	230 ± 10%
200	75	230 ± 10%	200	200	230 ± 10%
225	100	230 ± 10%	225	200	230 ± 10%
250	150	230 ± 10%	250	300	230 ± 10%
280	200	230 ± 10%	280	300	230 ± 10%
315	250	230 ± 10%	315	400	230 ± 10%

^{*}Sonderspannung auf Anfrage

Ex-geschützte **Motoren Baureihe DEx** Sonderausführungen

Motoren mit Geber

Optional können die Motoren mit einem Hohlwellengeber mit folgenden Technischen Daten ausgerüstet werden:

	Standardausführung	Sonderausführung
Fabrikat:	Kübler	Kübler
Anschluss:	2 m Kabel ohne Stecker	andere Kabellänge (ohne Stecker)
Impulse/Umdrehung:	1024	10 – 5000
Ausgangssignalpegel:	TTL oder HTL	auf Anfrage
Versorgungsspannung:	5V oder 10-30V	-
Zündschutzart:	II 2G Ex d IIC T6	-

Maßblätter: Siehe Ex-geschützte Drehstrommotoren in Sonderausführung: Hohlwellengeber

Motoren mit Motorkabel

Optional können die Motoren anstatt Klemmenkasten nur mit einem Motorkabel ausgeführt werden. Der Anschluss zum Motor erfolgt durch eine druckfeste Kabeleinführung am Motorgehäuse. Die Standard-Kabellänge beträgt 1,5 m. Andere Kabellängen sind auf Anfrage lieferbar.

Maßblätter: Siehe Ex-geschützte Drehstrommotoren in Sonderausführung: Kabelanschluss

Motoren mit Sonderwelle und Sonderflansch

Optional können die Motoren, speziell in Kombination mit einem Getriebe, mit Sonderflanschen und Sonderwellen in öldichter Ausführung geliefert werden.

Maßblätter hierzu auf Anfrage

Übersicht Sonderausführungen

Optional können die Motoren unter anderem in folgenden Sonderausführungen geliefert werden:

Bgr.	63	71	80	90	100	112	132	160	180	200	225	250	280	315
Abnormale Spannung	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Abnormale Frequenz	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Sonderwelle	•	•	•	•	•	•	•	•	•	•	•	•	•	•
2te. Wellenende	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Sonderflansch	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Rundlauf R	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Festlager A-Seite	Stan	dard		•	•	•		•	•	•			•	•
Öldicht	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Schutzart IP 56	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Schutzart IP 65	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Schutzart IP 66	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Schutzdach	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Schwingstärkenstufe B	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Tropenisolation	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Stillstandsheizung	•	•	•	•	•	•	•	•	•	•	•	•	•	•
gegen Kondensat														
Stillstandsheizung bei	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Tieftemperatur (< -20°)														
Rollenlager								•	•	•	•	•	•	•
Isolierte Lager				•	•	•	•	•	•	•	•	•	•	•
Nachschmiereinrichtung								•	•	•	•	•	•	•
Motoren mit Bremse		•	•	•	•	•	•							
Тур ВМ														
Motoren mit Bremse		•	•	•	•	•	•	•	•					
Typ KB (Kendrion)														
Motoren mit Bremse	•	•	•	•	•	•	•	•	•	•	•	•	•	
Typ BD (VIS)														
Motoren mit Fremdlüfter		•	•	•	•	•	•	•	•	•	•	•	•	•
Motoren mit Geber	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Motoren mit Motorkabel	•	•	•	•	•	•	•	•	•	•	•			
Temperaturklasse T5	auf A	nfrage												
Temperaturklasse T6	auf A	nfrage												
Zulassung 2D/Zone 21	•	•	•	•	•	•	•	•	•	•	•	•	•	
VIK-Ausführung	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DNV-GL Abnahme	•	•	•	•	•	•	•	•	•	•	•	•	•	•
EAC Abnahme	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Sonderlackierung	•	•	•	•	•	•	•	•	•	•	•	•	•	•

• Optional auf Anfrage lieferbar.

Ex-geschützte Drehstrommotoren (eintourig)

2-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 3000 min⁻¹

warmekias	3C. I		Delilens	art. Or		Syricini	one Die	nzani. J	OUU IIII	•		
Тур	Wirku ngsgr	Nenn-	Nenn-	Wirkung s-	Leistung s-	Nenn-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	ad	leistung	drehzahl	grad	faktor	strom	moment	zu- Nenn-	zu- Nenn-	zu- Nenn-	trägheits -	IM B3
D_Ex						(400V)		strom	moment	moment	moment	
		P_N	n	η	cos□□	I _N	M _N	I_A/I_N	M_A/M_N	M_K/M_N	J	М
		kW	min ⁻¹	%		Α	Nm				kgm²	ca. kg
63KH/2	IE2	0,18	2750	64,5	0,77	0,52	0,62	3,9	3,0	2,9	0,00014	13
63LH/2	IE2	0,25	2765	67,0	0,80	0,67	0,86	4,2	2,7	2,7	0,00019	14
71KH/2	IE2	0,37	2820	67,2	0,81	0,98	1,3	5,4	3,0	3,2	0,00034	15
71LH/2	IE2	0,55	2800	72,7	0,86	1,28	1,9	5,4	2,8	3,1	0,00042	16
80KP/2	IE3	0,75	2845	81,1	0,84	1,59	2,5	6,8	3,0	3,3	0,00104	25
80LP/2	IE3	1,1	2840	83,3	0,84	2,27	3,7	6,5	3,2	3,3	0,00122	26
90SP/2	IE3	1,5	2875	85,1	0,86	2,96	5,0	7,3	2,9	3,4	0,00146	33,5
90VP/2	IE3	2,2	2870	85,9	0,87	4,25	7,3	7,4	2,5	2,7	0,00223	39,5
100VP/2	IE3	3,0	2915	87,1	0,85	5,85	9,9	8,1	2,8	3,4	0,00428	52
112MP/2	IE3	4,0	2925	88,1	0,855	7,65	13,1	9,1	2,9	3,8	0,00655	65
132SAP/2	IE3	5,5	2940	89,8	0,81	10,9	17,9	10,1	3,7	4,7	0,01656	84
132SBP/2	IE3	7,5	2930	90,1	0,865	13,9	24,5	8,8	3,0	3,8	0,01922	95
160MAP/2	IE3	11	2940	91,2	0,868	20,0	35,6	8,26	2,8	3,3	0,02943	148
160MBP/2	IE3	15	2940	92,1	0,898	26,2	48,6	7,6	3,1	3,1	0,03912	166
160LP/2	IE3	18,5	2940	92,7	0,905	31,8	60,1	8,5	3,2	3,2	0,0459	178
180MP/2	IE3	22	2952	93,2	0,92	37,0	71,1	9,4	3,7	3,1	0,08335	244
200LAP/2	IE3	30	2955	93,8	0,912	50,6	96,9	8,1	2,8	3,0	0,13757	310
200VP/2	IE3	37	2960	94,0	0,91	62,2	119,4	8,2	2,8	2,9	0,15739	350
225MP/2	IE3	45	2970	94,1	0,88	78,4	144,7	9,0	3,2	3,3	0,22155	430
250MP/2	IE3	55	2975	94,3	0,87	96,6	177	9,9	3,5	3,3	0,815	630
280SP/2	IE3	75	2980	94,7	0,87	131,4	240	9,7	3,7	3,1	0,96	776
280MP/2	IE3	90	2980	95,0	0,91	150	289	9,5	3,7	2,9	1,1	811
315S/2		110										
315M/2		132				Toohr	nische Date	n in Vorbor	eitung			
315M/20		160				I COIII	nsone Dale	ii iii voibei	cituriy			
315L/2		200										
-	•											

Änderungen vorbehalten

4-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min-1

warmekias			etriebsari		•	illone D	lelizai	ii: 1500 n	11111			
Тур	Wirkung	Nenn-	Nenn-	Wirkungs-	Leistungs-	Nenn-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	sgrad	leistung	drehzahl	grad	faktor	strom		zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
D_Ex						(400V)	t	strom	moment	moment	moment	
D_LX		P_N	n	η	cos□□	I _N	M _N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
		kW	min ⁻¹	%		A	Nm				kgm²	ca. kg
63KH/4	IE2	0,12	1345	59,5	0,69	0,42	0,85	2,8	2,2	2,3	0,00021	13
63LH/4	IE2	0,18	1370	65,0	0,65	0,61	1,25	3,2	2,5	2,6	0,00029	14
71KH/4	IE2	0,25	1370	67,0	0,78	0,69	1,7	3,8	2,15	2,2	0,00051	15
71LH/4	IE2	0,37	1385	72,5	0,78	0,95	2,6	4,0	2,15	2,3	0,00063	16
80KH/4	IE2	0,55	1405	80,4	0,76	1,3	3,8	5,2	2,3	2,4	0,0010	24
80VP/4	IE3	0,75	1420	82,6	0,67	1,95	5,0	5,4	3,1	3,4	0,00208	29
90VP/4	IE3	1,1	1440	84,1	0,71	2,65	7,3	5,7	2,9	3,3	0,00351	38,5
90VP/4	IE3	1,5	1445	85,3	0,71	3,55	9,9	6,1	2,9	3,6	0,00426	41
100VP/4	IE3	2,2	1445	86,7	0,77	4,75	14,5	7,7	2,9	3,5	0,00712	53
100VP/4	IE3	3,0	1445	87,7	0,78	6,33	19,8	7,5	3,2	3,9	0,00913	58
112VP/4	IE3	4,0	1460	89,2	0,769	8,4	26,2	10,0	4,1	5,0	0,01578	78
132SP/4	IE3	5,5	1460	90,3	0,79	11,1	36,0	7,1	3,0	3,7	0,02793	96
132VP/4	IE3	7,5	1465	90,6	0,783	15,25	48,8	9,3	4,3	4,3	0,04416	124,5
160MP/4	IE3	11	1474	91,8	0,77	22,45	71,3	9,0	4,1	3,7	0,07116	178
160VP/4	IE3	15	1472	92,2	0,815	28,8	97,3	8,4	3,5	3,1	0,09691	200
180MP/4	IE3	18,5	1475	92,7	0,785	36,7	119,8	8,6	4,1	3,6	0,14922	273
180VP/4	IE3	22	1475	93,1	0,80	42,6	142,4	8,8	4,0	3,5	0,17663	293
200VP/4	IE3	30	1475	93,8	0,87	53,0	194	9,8	4,1	3,7	0,27865	376
225SP/4	IE3	37	1478	94,0	0,86	66,0	239	10,0	4,4	3,5	0,42845	430
225VP/4	IE3	45	1480	94,2	0,85	81,0	290	8,9	4,0	2,9	0,48581	450
250MP/4	IE3	55	1483	94,8	0,86	97,4	354	10,0	4,4	3,5	0,965	617
280SP/4	IE3	75	1485	95,1	0,84	135	482	8,5	3,3	2,7	1,875	800
280MP/4	IE3	90	1485	95,2	0,85	160,5	578	7,9	3,1	2,3	2,25	850
315S/4		110										
315M/4		132				Techn	ische Date	en in Vorbere	eituna			
315M/40		160				I GOIIII	icone Dati	on in voidele	July			
315L/4		200										

Änderungen vorbehalten

6-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹

vvarmekia	sse. r	Detrie	ebsart: S	וכ	Syric	mone	Dienz	anı: 100	io min .			
Тур	Wirkun gsgrad	Nenn-	Nenn-	Wirkung s-	Leistung s-	Nenn-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewich t
		leistung	drehzah I	grad	faktor	strom	mome nt	zu- Nenn-	zu- Nenn-	zu- Nenn-	trägheits -	IM B3
D_Ex						(400V)		strom	moment	moment	moment	
		P_N	n	η	cos□□	I _N	M _N	I _A /I _N	M _A /M _N	M _K /M _N	J	М
		kW	min ⁻¹	%		Α	Nm				kgm²	ca. kg
63K/6	-	0,09	895	51,0	0,61	0,42	1,0	2,3	2,2	2,3	0,00031	13
63LH/6	IE2	0,12	885	53,4	0,64	0,51	1,29	2,5	2,2	2,2	0,00042	14
71KH/6	IE2	0,18	930	61,9	0,66	0,64	1,85	3,1	2,2	2,5	0,00081	15
71LH/6	IE2	0,25	920	64,8	0,69	0,81	2,59	3,4	2,1	2,3	0,00101	16
80KH/6	IE2	0,37	920	68,0	0,69	1,13	3,84	3,6	2,1	2,3	0,0019	25
80LH/6	IE2	0,55	925	73,1	0,70	1,55	5,68	3,8	1,7	2,1	0,0024	26,5
90SP/6	IE3	0,75	955	78,9	0,63	2,2	7,51	5,1	2,79	3,17	0,00419	35
90VP/6	IE3	1,1	950	81,0	0,635	3,1	11,05	5,3	2,73	3,56	0,00662	40
100VP/6	IE3	1,5	960	82,5	0,67	3,92	14,95	6	3,17	3,46	0,01196	52
112VP/6	IE3	2,2	955	84,3	0,73	5,15	22	6,1	2,81	3,07	0,01864	67
132SP/6	IE3	3,0	973	87,0	0,705	7,05	29,45	7,2	2,9	3,54	0,03229	91
132MAP/6	IE3	4,0	975	87,1	0,68	9,8	39,24	8,2	3,71	4,28	0,03838	95
132MBP/6	IE3	5,5	972	88,0	0,7	12,85	54	7,7	3,16	3,92	0,05297	112
160MP/6	IE3	7,5	970	89,8	0,83	14,6	73,7	6,7	2,56	3,2	0,10916	182
160VP/6	IE3	11,0	975	90,3	0,8	22	107,9	8,4	2,78	3,6	0,12016	200
180VP/6	IE3	15,0	980	92,0	0,785	30	146,1	8,9	2,78	4,2	0,23	283
200VP/6	IE3	18,5	985	92,2	0,77	37,6	179,4	10	3,09	4,34	0,27888	339
200LBP/6	IE3	22,0	984	92,4	0,79	43,5	213,5	10,3	3,02	4,44	0,36708	361
225MP/6	IE3	30,0	986	92,9	0,77	60,5	290,4	8,5	4,38	2,95	0,75583	461
250MP/6	IE3	37,0			I.	I.			I.	I.	I.	I.
280SP/6	IE3	45,0										
280MP/6	IE3	55,0										
315S/6		75,0				Technis	sche Date	en in Vorbe	reitung			
315M/6		90,0										
315M/60		110,0										
315L/6		132,0										
L												

Änderungen vorbehalten

8-polig 400V-50Hz IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min-1

Wärmekla	sse: F	Be	etriebsari	: 51	Sync	nrone L	renzar	ıl: 750 mi	n-'			
Тур	Wirkung	Nenn-	Nenn-	Wirkungs-	Leistungs-	Nenn-	Nenn-	Anzugs-	Anzugs-	Kipp-	Massen-	Gewicht
	sgrad	leistung	drehzahl	grad	faktor	strom	momen t	zu-Nenn-	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
D_Ex						(400V)	,	strom	moment	moment	moment	
		P_N	n	η	cos□□	I _N	M_N	I_A/I_N	M_A/M_N	M_K/M_N	J	М
		kW	min ⁻¹	%		Α	Nm				kgm²	ca. kg
63L/8	-	0,06	650	31,0	0,73	0,50	0,88	2,0	2,0	2,1	0,00042	14
71K/8	-	0,09	680	38,0	0,67	0,51	1,3	2,0	2,0	2,1	0,00081	15
71L/8	IE2	0,12	680	58,4	0,62	0,48	1,69	2,5	1,7	1,9	0,00101	16
80K/8	IE2	0,18	700	62,3	0,59	0,71	2,46	2,8	2,0	2,3	0,0019	25
80L/8	IE2	0,25	695	64,4	0,6	0,93	3,43	2,9	1,9	2,2	0,0024	26,5
90S/8	IE2	0,37	685	68,2	0,65	1,25	5,16	3,0	1,8	2,1	0,0032	32
90L/8	IE2	0,55	685	70,9	0,64	1,75	7,67	3,1	1,9	2,1	0,0042	35
100VP/8	IE3	0,75	705	76,0	0,65	2,2	10,2	3,9	2,05	2,6	0,00857	46
100VP/8	IE3	1,1	705	77,9	0,65	3,14	14,9	4,1	2	2,47	0,0118	53
112VP/8	IE3	1,5	713	79,8	0,645	4,2	20,1	4,6	2,26	2,78	0,01864	67
132VP/8	IE3	2,2	720	84,1	0,67	5,64	29,1	5,9	2,75	3,6	0,03446	85
132VP/8	IE3	3,0	720	84,4	0,69	7,43	39,8	5,6	2,45	3,15	0,04198	98
160VP/8	IE3	4,0	725	87,9	0,73	9	52,6	5,7	2,06	2,64	0,0688	146
160VP/8	IE3	5,5	720	86,2	0,77	11,95	73	5,1	1,7	2,34	0,08939	160
160LP/8	IE3	7,5	725	88,5	0,765	16	98,6	6,2	2,13	2,69	0,12027	182
180VP/8	IE3	11,0	720	88,7	0,8	22,5	145,6	5,6	1,89	2,48	0,227	236
200VP/8	IE3	15,0	733	91,1	0,745	31,9	195,4	7,4	2,5	3,4	0,3783	325
225VP/8	IE3	18,5				Techn	ische Dat	en in Vorbere	eitung			
225VP/8	IE3	22,0	733	91,7	0,76	45,5	286,7	7,5	2,5	3,44	0,67806	448
250MP/8	IE3	30,0				Techn	ische Dat	en in Vorbere	eitung			
280SP/8	IE3	37,0	738	91,8	0,81	71,8	478,7	7,3	2,4	2,8	2,3	781
280MP/8	IE3	45,0										
315S/8		55,0										
315M/8		75,0				Techn	ische Dat	en in Vorbere	eitung			
315M/80		90,0										
315L/8		110,0										
<u> </u>	1											

Änderungen vorbehalten

Ex-geschützte Drehstrommotoren (polumschaltbar)

4-2 polig 400V-50Hz Δ/YY IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1500 min⁻¹ / 3000 min⁻¹

				,				
Тур	Nenn-	Nenn-	Nenn-	Nenn-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	moment	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
	loiotang	aronizani					-	20
DEx			(400V)		strom	moment	moment	
DDEx	P _N	n	I _N	M _N	I _A /I _N	M _K /M _N	J	M
	kW	min ⁻¹	Α	Nm			kgm²	ca. kg
63K/4-2	0,09	1380	0,45	0,62	3,2	2,2	0,00021	13
	0,12	2800	0,50	0,41	3,5	2,1		
63L/4-2	0,12	1390	0,50	0,82	3,6	2,2	0,00029	14
	0,18	2800	0,55	0,61	3,8	2,0		
71K/4-2	0,21	1380	0,75	1,45	3,6	2,1	0,00051	16
	0,28	2800	0,90	0,96	3,9	2,1		
71L/4-2	0,30	1380	1,05	2,08	3,8	2,1	0,00063	17
	0,43	2800	1,25	1,47	4,0	2,0		
80K/4-2	0,50	1370	1,26	3,49	3,7	1,8	0,0010	25
	0,65	2760	1,43	2,25	3,4	1,9		
80L/4-2	0,70	1365	1,75	4,90	4,1	2,0	0,0013	28
	0,85	2810	1,85	2,89	5,5	2,4		
90S/4-2	1,1	1415	2,60	7,42	4,4	1,9	0,0020	34
	1,4	2800	2,95	4,78	4,7	2,0		
90L/4-2	1,5	1410	3,30	10,2	4,9	2,1	0,0026	36
	1,9	2850	3,90	6,37	5,3	2,3		
100L/4-2	1,8	1430	4,16	12,0	4,8	2,0	0,0039	45
	2,4	2860	5,25	8,01	5,0	1,9		
100L/4-20	2,6	1420	5,65	17,5	5,8	2,1	0,0050	49
44004/4.0	3,2	2870	6,60	10,7	6,6	2,3	0.0404	0.4
112M/4-2	3,7	1460	8,40	24,2	6,6	2,8	0,0101	64
4000/4.0	4,4	2890	8,50	14,5	7,4	2,9	0.0044	89
132S/4-2	5,0	1460	11,5	32,7	6,2	2,7	0,0211	89
132M/4-2	6,0	2900	11,9	19,8	6,4	2,8	0,0279	99
132101/4-2	6,1 7,5	1450 2910	13,8 15,4	40,2 24,6	6,7 6,9	2,5 2,3	0,0279	99
160M/4-2	9,0	1465	19,5	58,7	6,5	2,3	0,0542	170
100IVI/4-2	10,5	2930	22,0	34,2	7,5	2,3	0,0342	170
160L/4-2	12	1470	27,5	78,0	7,2	2,8	0,0712	189
100L/4-2	15	2940	31,0	48,7	7,5	2,7	0,0712	109
180GM/4-2	14	1470	29	100	6,8	2,5	0,1129	220
1000101/4-2	17	2940	33	55,2	7,5	2,5	0,1123	220
180GL/4-2	17	1475	35	110	6,9	2,5	0,1339	240
10002/12	20	2950	39	64,7	7,5	2,5	0,1000	2.0
200GL/4-2	20	1475	41	130	7,0	2,5	0,213	260
	23	2950	46	74,5	7,5	2,5	,	
225GS/4-2	24	1480	46	155	7,0	2,5	0,362	320
	28	2955	59	90,5	7,5	2,5	• •	
225GM/4-2	29	1485	62	186	7,2	2,5	0,429	400
	34	2960	66	109	7,6	2,6		
250GM/4-2	36	1485	77	231	7,1	2,4	0,875	490
	45	2960	87	145	7,5	2,5		
280S/4-2	46	1480	85	296	6,8	2,0	1,88	610
	58	2970	95	186	7,0	2,0		
280M/4-2	65	1480	128	419	6,6	1,8	2,25	685
	80	2970	142	257	6,8	1,8		
315S/4-2	78	1485	154	501	6,5	1,8	3,5	820
	90	2970	176	289	6,0	1,7		
315M/4-2	90	1485	156	578	6,5	1,8	3,9	930
	100	2970	190	321	6,2	1,7		
315M/4-20	100	1485	208	643	6,2	1,8	5,0	1240
	120	2970	230	385	6,0	1,6		

Änderungen vorbehalten

6-4 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 1000 min⁻¹ / 1500 min⁻¹

	citiaooc. i		boart. O i	-	HONG DIGITAL			
Тур	Nenn-	Nenn-	Nenn-	Nenn-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	moment	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
DEx			(400V)		strom	moment	moment	
DDEx	P_N	n	I _N	M _N	I _A /I _N	M _K /M _N	J	М
222	kW				170 -14			
		min ⁻¹	А	Nm			kgm ²	ca. kg
71K/6-4	0,15	920	0,75	1,55	2,6	1,6	0,00051	16
	0,2	1440	0,85	1,33	3,3	1,6		
71L/6-4	0,21	920	1,2	2,18	2,6	2,0	0,00063	17
001//0.4	0,3	1420	1,35	2,02	3,4	1,9	0.0040	0.5
80K/6-4	0,22	930 1455	0,7	2,26	3,3	1,9	0,0010	25
001 /6 4	0,32		1,05	2,10	4,2	2,1	0,0013	28
80L/6-4	0,26 0,4	940 1425	0,94 1,28	2,64 2,68	3,5 3,6	2,2 1,9	0,0013	28
90S/6-4	0,4	945	1,26	4,55	3,6	2,1	0,0020	34
903/0-4	0,45	1450	1,75	4,35	5,3	2,1	0,0020	34
90L/6-4	0,66	960	1,73	5,97	3,6	2,2	0,0026	36
90L/0-4	0,0	1425	2,1	6,03	4,4	1,9	0,0020	30
100 L/6-4	0,9	960	2,1	8,95	4,4	1,8	0,0039	45
100 L/0-4	1,3	1420	3,0	8,74	4,0	1,9	0,0039	40
100 L/6-40	1,1	960	2,8	10,9	4,3	1,8	0,0050	49
100 L/0-40	1,7	1450	3,7	11,2	4,7	2,1	0,0000	40
112M/6-4	1,5	970	3,55	14,8	5,3	2,2	0,0101	64
11211110	2,4	1450	5,05	15,8	5,4	1,9	0,0101	0.
132S/6-4	2,2	965	5,05	21,8	5,7	1,9	0,0211	89
	3,0	1465	6,0	19,6	6,1	2,1	5,5211	
132M/6-4	3,0	975	6,7	29,4	6,5	2,2	0,0279	99
	4,5	1460	8,9	29,4	6,3	1,9	.,,	
160M/6-4	3,8	965	9,0	37,6	6,0	2,0	0,0542	155
	5,7	1465	13,0	37,2	6,5	1,8		
160L/6-4	5,5	980	13,3	53,6	7,0	2,1	0,0712	197
	8	1480	16,8	51,6	7,0	2,0		
180GM/6-4	7,5	980	16,6	73,1	6,3	2,0	0,1129	220
	11	1470	22	71,5	6,5	1,6		
180GL/6-4	9	980	20	87,7	6,5	2,0	0,1339	240
	13	1470	26	84,5	7,0	1,5		
200GL/6-4	13	980	31	126	6,8	2,1	0,213	260
	19	1470	39	123	7,2	2,2		
225GS/6-4	19	980	40	185	6,0	2,0	0,362	320
	23	1470	48	149	6,3	2,2		
225GM/6-4	23	980	48	224	6,0	2,1	0,429	400
050011/2	27	1470	56	175	6,5	2,0	0.0==	
250GM/6-4	27	980	53	263	6,0	2,1	0,875	490
0000/0.4	32	1470	65	207	6,5	2,2	4.00	040
280S/6-4	32 45	985	63	310	6,5	2,3	1,88	610
20014/2-4	45	1475	89	291	7,0	2,7	2.05	005
280M/6-4	37 55	985 1475	72 108	358 356	6,5 7.0	2,3	2,25	685
315S/6-4					7,0	2,7	3.5	920
3133/0-4	45 67	985 1485	88 130	436 430	6,8 7,2	2,1 2,3	3,5	820
315M/6-4	55	985	108	533	6,8	2,3	3,9	930
		900	100					9.30

Änderungen vorbehalten

8-4 polig 400V-50Hz Δ/ΥΥ IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 1500 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Nenn-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	moment	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
DEx	3		(400V)		strom	moment	moment	
DDEx	P_N	n	I _N	M _N	I _A /I _N	M _K /M _N	J	М
	kW	min ⁻¹	A	Nm	<i>,</i> , ,		kgm²	ca. kg
63L/8-4	0,030	670	0,45	0,42	2,0	1,7	0,00042	14
002/0 1	0,12	1390	0,50	0,82	3,4	1,9	0,00012	
71K/8-4	0,048	650	0,32	0,70	2,1	1,7	0,00081	16
	0,22	1370	0,57	1,53	3,8	2,0	-,	
71L/8-4	0,07	650	0,47	1,00	2,1	1,7	0,00101	17
	0,32	1370	0,82	2,23	3,8	2,0	2,22.2.	
80K/8-4	0,2	690	0,83	2,77	2,8	2,0	0,0019	25
	0,3	1380	0,79	2,08	3,9	2,2	,	
80L/8-4	0,27	690	1,08	3,74	2,9	2,1	0,0024	28
	0,4	1400	0,96	2,73	4,5	2,2	,	
90S/8-4	0,42	705	1,9	5,69	2,8	2,0	0,0032	34
	0,8	1390	1,9	5,50	3,9	1,8		
90L/8-4	0,5	710	2,3	6,73	3,1	2,1	0,0042	36
	1,0	1410	2,25	6,77	4,3	1,9		
100L/8-4	0,9	690	3,05	12,5	3,2	2,1	0,0066	45
	1,3	1380	3,0	9,00	4,2	2,1		
100L/8-40	1,0	720	3,2	13,3	3,9	2,1	0,0086	49
	1,6	1430	3,35	10,7	5,3	2,2		
112M/8-4	1,5	710	4,25	20,2	4,6	2,2	0,0158	64
	2,5	1430	5,0	16,7	5,7	2,1		
132S/8-4	2,3	720	6,7	30,5	5,3	2,3	0,0272	89
	3,6	1450	7,3	23,7	6,9	2,2		
132M/8-4	3,0	720	9,5	39,8	4,5	2,3	0,0323	99
	5,0	1445	9,9	33,0	5,4	2,3		
160M/8-4	4,0	725	10,5	52,7	5,2	1,8	0,0812	155
	5,5	1460	10,8	36,0	7,0	1,8		
160M/8-40	4,6	725	12,8	60,6	4,6	1,8	0,1092	165
	7,3	1460	14,6	47,8	7,0	1,9		
160L/8-4	6,8	725	21	89,6	4,8	1,8	0,1092	197
	11	1460	23	72,0	7,0	2,0		
180GL/8-4	11	725	29	144	4,6	1,7	0,227	240
	15	1460	30	98,1	7,0	2,0		
200GL/8-4	15	730	33	196	5,3	1,6	0,244	260
	20	1465	44	130	6,8	1,8		
225GS/8-4	18	730	42	235	5,3	1,6	0,570	320
	24	1465	50	156	6,8	1,8		
225GM/8-4	22	730	50	287	5,0	1,6	0,661	400
	28	1465	55	182	7,0	2,0		
250GM/8-4	30	730	67	392	4,5	1,6	1,125	490
0005:5	42	1465	80	273	6,5	2,0		0.15
280\$/8-4	35	735	80	454	4,6	1,6	2,30	610
00011/0.4	51	1470	96	331	6,5	1,6	0.00	227
280M/8-4	42	735	88	545	5,0	1,6	2,63	685
0450/0-4	60	1470	105	389	6,3	1,6	4.2	000
315S/8-4	52	740	109	671	5,0	1,6	4,6	820
245140 4	68	1475	130	440	6,4	1,6	F.0	000
315M/8-4	70 00	740	147	903	5,8	1,7	5,3	930
Ä	90	1475	173	582	6,5	1,6		

Änderungen vorbehalten

8-6 polig 400V-50Hz Y/Y IC 411

Wärmeklasse: F Betriebsart: S1 Synchrone Drehzahl: 750 min⁻¹ / 1000 min⁻¹

Тур	Nenn-	Nenn-	Nenn-	Nenn-	Anzugs-	Kipp-	Massen-	Gewicht
	leistung	drehzahl	strom	moment	zu-Nenn-	zu-Nenn-	trägheits-	IM B3
DEx	3		(400V)		strom	moment	moment	
DDEx	P_N	n	I _N	M _N	I _A /I _N	M _K /M _N	J	М
BBLX	kW	min ⁻¹	A	Nm	IA/IN	IVIKITIN	kgm²	ca. Kg
000/0.0					0.7	4.7		
90S/8-6	0,35	695	1,35	4,81	2,7	1,7	0,0323	34
001 /0 0	0,45	960	1,5	4,48	3,3	1,8	0.00440	00
90L/8-6	0,45	695	1,68	6,18	2,7	1,8	0,00419	36
100 L/8-6	0,6	960 715	2,07 2,05	5,97 8,01	3,5 2,9	2,0	0,00657	A.E.
100 L/8-6	0,8	970				1,6	0,00657	45
100 L/8-60		710	2,15	7,88	4,1	1,8	0,00857	40
100 L/8-60	0,75	970	2,4 2,5	10,1 8,86	3,1	1,6	0,00857	49
44014/0.0	0,9				4,7	2,0	0,0158	64
112M/8-6	0,9	720 970	2,8	11,9	4,2	2,2	0,0158	64
132S/8-6	1,2 1,5	725	3,0	11,8 19,8	5,1 4,8	2,4 2,5	0,02722	00
1325/8-0		975	5,05				0,02722	89
132M/8-6	2,0	725	5,5	19,6 29,0	6,2 3,9	2,4 2,1	0,03229	00
132101/8-0	3,0	975	6,8 8,1	29,0			0,03229	99
4C0M/0.C		725			5,3	2,2	0,08121	155
160M/8-6	3,5 5,0	975	8,8 12,0	46,1 49,0	5,5 6,4	2,3 2,1	0,06121	100
160L/8-6	5,0	725	12,0	65,9	5,5	2,1	0,10916	197
100L/6-0	5,0 7,0	975	16,0	68,6	5,5 6,5	2,4	0,10910	197
180GL/8-6	7,0	725	18	92,2	5,5	2,0	0,227	240
180GL/6-0	9,5	980	24	92,6	6,2	1,8	0,227	240
200GL/8-6	10	725	23	131	5,5	2,3	0,24369	260
200GL/0-0	13	980	27	126	6,8	2,1	0,24309	200
225GS/8-6	13	725	29	171	5,3	1,7	0,57008	320
22300/0-0	16	975	36	156	6,2	1,6	0,57000	320
225GM/8-6	17	725	42	223	5,4	1,7	0,66117	400
220011170	22	975	54	215	6,5	1,6	0,00111	100
250GM/8-6	22	730	51	287	5,8	1,9	1,125	490
	30	985	65	290	6,5	1,6	.,	
280S/8-6	27	735	63	350	5,8	1,8	2,3	610
	35	985	80	339	6,5	1,6	_,-	
280M/8-6	33	735	74	428	6,0	1,8	2,625	685
	41	985	90	397	6,7	1,6	,	
315S/8-6	40	735	90	519	6,0	1,8	4,625	820
	50	985	102	484	7,0	1,6	,	
315M/8-6	48	735	103	623	6,0	1,8	5,25	930
	62	985	125	601	7,0	1,6	-,	

Änderungen vorbehalten

Ex-geschützte Drehstrommotoren, Betrieb am Frequenzumrichter

Betrieb am Frequenzumrichter: 2-polige Motoren

Betrieb	Netz		Freque nzumrichterbetrieb												
Belüftung	IC 411	IC ·	IC 411 IC 411			IC ·	411	IC 4	411	IC ·	411	IC ·	411		416 pelüftet
Mo mentverla uf		M ·	M ∼ n ² ko nstant		kons	stant	kon	sta nt	kon	stant	M ~	50/f	ko n	stant	
Frequenz	50 Hz	5 - 5	50 Hz	20 -	50Hz	10 -	50Hz	5 - 5	0Hz	50 - 8	37Hz *	50 -	87 Hz	5 - 5	50Hz
Synchro ndrehzahl		300 -	3000	1200	- 30 00	600-	1500	300 -	3000	3000	- 5 220	3000	- 5220	300 -	3000
Stellbereich		1:	10	1:	2,5	1	: 5	1:	10	1:	1,74	1:	1 ,74	1:	10
Spannung / Frequenz		U/f = k	onstan t	U/f = k	onstant	U/f = k	onstant	U/f = k	on sta nt	U/f = k	onstant	U = kc	nstant	U/f = k	onstant
Leistung / Drehmoment	Р	P/kW	M/Nm	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/Nm
	kW	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	b ei/Hz	be i/Hz
Typ / DEx bzw. D DEx		50	50	50	20	50	10	50	5	87	50-87	50-87	87	50	5-50
63 K/2	0,18	0,18	0,62	0,18	0,61	0,17	0,57	0,16	0,54	0,30	0,62	0,18	0,36	0,18	0,62
63 L/2	0,25	0,25	0,86	0,25	0,86	0,23	0,78	0,22	0,74	0,42	0,86	0,25	0,50	0,25	0,86
71 K/2	0,37	0,37	1,25	0,35	1,2	0,3	1	0,22	0,74	0,64	1,25	0,37	0,71	0,37	1,25
71 L/2	0,55	0,55	1,9	0,52	1,8	0,45	1,5	0,33	1,1	0,96	1,9	0,55	1,1	0,55	1,9
80 K/2	0,75	0,75	2,6	0,7	2,4	0,6	2	0,5	1,7	1,3	2,6	0,75	1,5	0,75	2,6
80 L/2	1,1	1,1	3,7	1	3,4	0,9	3	0,75	2,5	1,9	3,7	1,1	2,1	1,1	3,7
90 S/2	1,5	1,5	5	1,4	4,7	1,2	4	1	3,3	2,6	5	1,5	2,9	1,5	5
90 L/2	2,2	2,2	7,4	2	6,7	1,7	5,7	1,4	4,7	3,8	7,4	2,2	4,2	2,2	7,4
10 0L/2	3	3	10	2,7	8,9	2,2	7,2	1,8	5,9	5,2	10	3	5,7	3	10
112M/2	4	4	13	3,7	12	3,2	11	2,5	8,2	7	13	4	7,4	4	13
132S/2	5,5	5,5	18	5	16	4,5	15	3,7	12	9,6	18	5,5	10,3	5,5	18
13 2M/20	7,5	7,5	25	7	23	6	20	5	16	13	25	7,5	14,2	7,5	25
16 0M/2	11	11	36	10	32	9	29	7,5	24	19	36	11	21	11	36
16 0M/20	15	14,5	47	13	42	12	39	10	32	25,2	47	14,5	27	14,5	47
16 0L/2	18,5	17,5	57	16	52	15	49	12,5	41	30,5	57	17,5	33	17,5	57
180GM/2	22	20	65	19	62	17	56	15	49	35	65	20	37	20	65
20 0GL/2	30	27	87	26	84	24	76	21	68	47	87	27	50	27	87
20 0GL/20	37	33	107	32	103	28	90	26	84	56	107	33	61	33	107
225GM/2	45	40	130	37	119	34	110	32	101	69	130	40	75	40	130
25 0GM/2	55	50	159	45	145	43	138	39	124	86	159	50	91	50	159
280S/2	75	67	217	60	193	58	186	53	169	-	-	67	124	67	217
28 0M/2	90	81	260	73	234	70	225	63	202	-	-	81	150	81	260
315S/2	110	100	318	90	288	88	282	78	247	-	-	100	182	100	3 18
315M/2	132	119	382	110	353	105	331	93	297	-	-	119	219	119	382
315M/20	160	144	458	135	433	125	400	112	358	-	-	144	263	144	4 58
315L/2	200	180	575	165	528	156	500	140	447	-	-	180	330	180	575

^{*} Betrieb nur mit Wicklungsausführung 230/400V möglich

Änderungen vorbehalten

⁻ Wicklungsausführung 230/400V ab Baugröße 280 auf Anfrage

Betrieb am Frequenzumrichter: 4-polige Motoren

Betrieb	Netz	Freque nzumrichter betrieb													
Belüftung	IC 411	IC 411		IC 411		IC 411		IC 411		IC 411		IC 411		IC 416 fremdbe lüft et	
Mo mentverla uf		$M \sim n^2$		ko nstant		konstant		kon sta nt		konstant		M ~ 50/f		ko nstant	
Frequenz	50 Hz	5 - 50 Hz		20 - 50Hz		10 - 50Hz		5 - 5 0Hz		50 - 87Hz *		50 - 87 Hz		5 - 50Hz	
Synchro ndrehzahl		150 - 1500		600 - 1500		300 - 1500		150 - 1500		1500 - 2610		1500 - 2610		150 - 1500	
Stellbereich		1:10		1:2,5		1:5		1:10		1 : 1,74		1:1,74		1:10	
Spannung / Frequenz		U/f = konstan t		U/f = konstant		U/f = konstant		U/f = kon sta nt		U/f = konstant		U = konstant		U/f = konstant	
Leistung / Drehmoment	Р	P/kW	M/Nm	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/Nm
	kW	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	b ei/Hz	bei/Hz
Typ / DEx bzw. D DEx		50	50	50	20	50	10	50	5	87	50-87	50-87	87	50	5-50
63 K/4	0,12	0,12	0,85	0,12	0,85	0,11	0,75	0,11	0,75	0,21	0,85	0,12	0,49	0,12	0 ,85
63 L/4	0,18	0,18	1,25	0,18	1,25	0,17	1,18	0,16	1,1	0,31	1,25	0,18	0,72	0,18	1,25
71 K/4	0,25	0,25	1,7	0,22	1,5	0,19	1,25	0,18	1,2	0,43	1,7	0,25	1	0,25	1,7
71 L/4	0,37	0,37	2,5	0,33	2,2	0,28	1,9	0,22	1,5	0,64	2,5	0,37	1,4	0,37	2,5
80 K/4	0,55	0,55	3,8	0,52	3,5	0,45	3	0,33	2,2	0,96	3,8	0,55	2,2	0,55	3,8
80 L/4	0,75	0,75	5,2	0,7	4,8	0,6	4	0,5	3,3	1,3	5,2	0,75	3	0,75	5,2
90 S/4	1,1	1,1	7,5	1	6,7	0,9	6	0,75	5	1,9	7,5	1,1	4,3	1,1	7,5
90 L/4	1,5	1,5	10	1,4	9,5	1,2	8	1	6,7	2,6	10	1,5	5,7	1,5	10
10 0L/4	2,2	2,2	15	2	13	1,7	11	1,4	9,3	3,8	15	2,2	8,5	2,2	15
10 0L/40	3	3	20	2,8	19	2,2	15	1,8	12	5,2	20	3	11,4	3	20
11 2M/4	4	4	27	3,6	24	3	20	2,5	16	7	27	4	15,4	4	27
132S/4	5,5	5,5	37	5	33	4,4	29	3,7	24	9,6	37	5,5	21	5,5	37
132M/4	7,5	7,5	50	7	46	6	39	5	33	13	50	7,5	28,5	7,5	50
16 0M/4	11	11	72	10	65	9	58	7,5	49	19	72	11	41	11	72
16 0L/4	15	15	98	13,5	88	12	78	10	65	26	98	15	56	15	98
180GM/4	18,5	18	118	17	111	15	97	12,5	81	31	118	18	67	18	118
18 0GL/4	22	21	137	20	130	18	117	15	97	37	137	21	78	21	137
20 0GL/4	30	28	183	27	176	24	156	21	136	49	183	28	104	28	183
225GS/4	37	34	220	32	206	29	188	26	168	59	220	34	126	34	220
225GM/4	45	41	265	39	250	35	227	32	207	71	265	41	152	41	265
25 0GM/4	55	50	322	48	305	43	278	39	248	86	322	50	185	50	322
280S/4	75	68	437	65	415	58	373	53	337	-	-	68	251	68	437
28 0M/4	90	82	525	78	497	70	450	64	405	-	-	82	302	82	5 2 5
315S/4	110	100	643	95	607	86	550	77	494	-	-	100	369	100	643
315M/4	132	120	771	115	732	105	673	94	596	-	-	120	443	120	771
315M/40	160	145	929	138	883	126	801	113	719	-	-	145	534	145	929
315L/4	200	180	1157	173	1102	160	1026	140	897	-	-	180	665	180	1 157

^{*} Betrieb nur mit Wicklungsausführung 230/400V möglich

Änderungen vorbehalten

⁻ Wicklungsausführung 230/400V ab Baugröße 280 auf Anfrage

Betrieb am Frequenzumrichter: 6-polige Motoren

Betrieb	Netz	Freque nzumrichterbetrieb													
Belüftu ng	IC 411	IC 411		IC 411		IC 411		IC 411		IC 411		IC 411		IC 416 fremdbe lüft et	
Momentverlauf		$M \sim n^2$		konstant		konstant		kon sta nt		konstant		M ~ 50/f		ko nstant	
Frequenz	50 Hz	5 - 50 Hz		20 - 50Hz		10 - 50Hz		5 - 50Hz		50 - 87Hz *		50 - 87 Hz		5 - 50Hz	
Synchrondrehzahl		100 - 1000		400 - 1000		200 - 1000		100 - 1000		1000 - 1740		1000 - 1740		100 - 1000	
Stellbereich		1:10		1 : 2,5		1:5		1:10		1 : 1,74		1:1,74		1:10	
Spannung / Frequenz		U/f = konstant		U/f = konstant		U/f = konstant		U/f = kon stant		U/f = konstant		U = konstan t		U/f = konstant	
Leistung / Drehmoment	Р	P/kW	M/Nm	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/Nm
	kW	bei/Hz	bei/Hz	b ei/ Hz	be i/Hz	bei/Hz	bei/Hz	be i/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	b ei/Hz	be i/Hz
Typ / DEx bzw. D DEx		50	50	50	20	50	10	50	5	87	50-87	50-87	87	50	5-50
63 K/6	0,09	0,09	1,0	0,08	0,89	0,07	0,78	0,06	0,67	0,15	1,0	0,09	0,58	0,09	1,0
63L/6	0,12	0,12	1,3	0,11	1,2	0,09	0,98	0,08	0,87	0,21	1,3	0,12	0,75	0,12	1,3
71 K/6	0,18	0,18	1,9	0,15	1,6	0,13	1,3	0,11	1,1	0,32	1,9	0,18	1,1	0,18	1,9
71L/6	0,25	0,25	2,5	0,22	2,2	0,18	1,8	0,18	1,6	0,43	2,5	0,25	1,5	0,25	2,5
80 K/6	0,37	0,37	3,8	0,33	3,4	0,27	2,7	0,22	2,2	0,64	3,8	0,37	2,2	0,37	3,8
80 L/6	0,55	0,55	5,7	0,5	5,1	0,4	4	0,33	3,3	0,95	5,7	0,55	3,3	0,55	5,7
90 S/6	0,75	0,75	7,8	0,65	6,7	0,55	5,5	0,42	4,2	1,3	7,8	0,75	4,5	0,75	7,8
90 L/6	1,1	1,1	11,4	0,9	9,2	0,8	8	0,6	6	1,9	11,4	1,1	6,6	1,1	11,4
10 0L/6	1,5	1,5	15	1,4	14	1,1	11	0,9	9	2,6	15	1,5	8,6	1,5	15
112M/6	2,2	2,2	22	2,0	20	1,7	17	1,3	13	3,8	22	2,2	13	2,2	22
132S/6	3	3	30	2,7	27	2,2	22	1,8	18	5,2	30	3	17,5	3	30
132M/6	4	4	40	3,5	35	3	30	2,5	25	6,9	40	4	23	4	40
132M/60	5,5	5,5	55	4,8	48	4	40	3,3	33	9,5	55	5,5	32	5,5	55
160M/6	7,5	7,5	74	7	69	6	59	5	49	13	74	7,5	43	7,5	74
160L/6	11	11	110	10	98	9	88	7,5	73	19	110	11	63	11	110
180GM/6	15	14	133	13	128	12	118	10	98	24	133	14	76	15	148
200GL/6	18,5	18	171	16	157	14	137	12	118	31	171	18	98	18,5	183
200GL/60	22	20	196	19	188	17	157	15	147	35	196	20	113	22	218
225GM/6	30	27	262	25	242	23	223	21	204	47	262	27	151	30	293
250GM/6	37	34	323	32	308	29	281	26	252	59	323	34	186	37	3 59
280S/6	45	41	393	39	376	35	338	32	309	-	-	41	226	45	4 37
280M/6	55	50	481	48	4 59	43	415	39	374	-	-	50	276	55	5 34
315S/6	75	69	672	65	629	58	571	54	512	-	-	69	378	75	732
315M/6	90	82	795	78	752	71	681	64	623	-	-	82	452	90	874
315M/60	110	100	960	96	917	87	831	78	756	-	-	100	551	110	1060
315L/6	132	120	1150	115	1100	104	997	94	906	-	-	120	660	132	1275

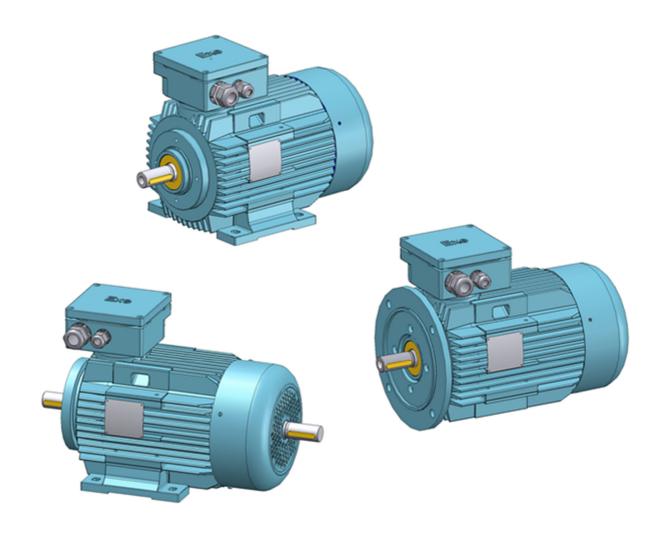
^{*} Betrieb nur mit Wicklungsausführung 230/400V möglich

Änderungen vorbehalten

⁻ Wicklungsausführung 230/400V ab Baugröße 280 auf Anfrage

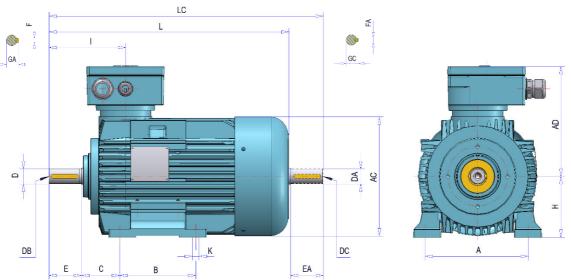
Betrieb am Frequenzumrichter: 8-polige Motoren

Betrieb	Netz														
Belüftung	IC 411	IC	411	IC -	411	IC ·	411	IC 4	411	IC -	411	IC	411		416 oe lüft et
Momentverlauf		M ·	~ n ²	ko n	stant	kons	stant	kons	sta nt	kon	stant	M ~	50/f	kon	stant
Frequenz	50 Hz	5 - 5	50 Hz	20 -	50Hz	10 -	50Hz	5 - 5	0Hz	50 - 8	37Hz *	50 -	87 Hz	5 - 5	50Hz
Synchro ndr ehzahl		75 -	750	300	-750	150	- 750	75 -	750	750 -	1305	750 -	1305	75 -	750
Stellbereich		1:	10	1:	2,5	1	: 5	1:	10	1:	1,74	1:	1,74	1:	10
Spannung / Frequenz		U/f = k	onstan t	U/f = k	onstant	U/f = k	onstant	U/f = k	on stant	U/f = k	onstant	U = ka	onstan t	U/f = k	o nstant
Le istung / Drehmom ent	Р	P/kW	M/Nm	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/N m	P/kW	M/Nm	P/kW	M/Nm
	kW	bei/Hz	bei/Hz	b ei/ Hz	be∛Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	bei/Hz	b ei/Hz	be i/Hz
Typ / DEx bzw. DDEx		50	50	50	20	50	10	50	5	87	50-87	50-87	87	50	5-50
63L/8	0,06	0,06	0,90	0,05	0,75	0,04	0,60	0,04	0,60	0,10	0,90	0,06	0,52	0,06	0,90
71 K/8	0,09	0,09	1,25	0,08	1,1	0,07	0,96	0,06	0,83	0,16	1,25	0,09	0,72	0,09	1,25
71L/8	0,12	0,12	1,7	0,11	1,5	0,1	1,4	0,08	1,1	0,21	1,7	0,12	1,0	0,12	1,7
80 K/8	0,18	0,18	2,5	0,16	2,2	0,13	1,7	0,11	1,5	0,32	2,5	0,18	1,5	0,18	2,5
80 L/8	0,25	0,25	3,4	0,22	3,0	0,16	2,4	0,15	2,2	0,43	3,4	0,25	2,0	0,25	3,4
90 S/8	0,37	0,37	5,1	0,33	4,4	0,27	3,6	0,22	3,0	0,64	5,1	0,37	3,0	0,37	5,1
90 L/8	0,55	0,55	7,5	0,5	6,7	0,4	5,4	0,33	4,4	0,95	7,5	0,55	4,3	0,55	7,5
100L/8	0,75	0,75	10,2	0,65	8,7	0,55	7,4	0,42	5,6	1,3	10,2	0,75	5,9	0,75	10,2
100L/80	1,1	1,1	15,1	0,9	12	0,8	11	0,6	8,1	1,9	15,1	1,1	8,7	1,1	15,1
112M/8	1,5	1,5	20,2	1,4	19	1,1	15	0,9	12	2,6	20,2	1,5	12	1,5	20,2
132S/8	2,2	2,2	30	2	27	1,7	23	1,3	17	3,8	30	2,2	17,5	2,2	30
132M/8	3	3	40,5	2,7	36	2,2	29	1,8	24	5,2	40,5	3	24	3	40,5
160M/8	4	4	53,5	3,5	46	3	40	2,5	33	6,9	53,5	4	31	4	53,5
16 0M/80	5,5	5,5	73	4,8	64	4	53	3,3	44	9,5	73	5,5	42	5,5	73
160L/8	7,5	7,5	100	7	82	6	72	4,5	59	13	100	7,5	58	7,5	100
180GL/8	11	11	146	10	131	8	104	7	91	19	146	11	84	11	146
200GL/8	15	14	186	13	172	12	159	10	132	24	183	14	107	15	196
225GS/8	18,5	17,5	235	16,8	225	15	200	14	188	30	233	17,5	135	18,5	249
225GM/8	22	21	280	20	267	18	240	16	213	36	277	21	161	22	293
250GM/8	30	28	366	27	3 5 3	24	314	22	287	48	363	28	210	30	3 98
280S/8	37	34	444	33	431	30	392	27	353	-	-	34	255	37	4 85
28 0 M/8	45	41	533	40	5 19	36	467	32	415	-	-	41	306	45	5 86
315S/8	55	50	650	48	623	44	571	39	506	-	-	50	374	55	7 16
315M/8	75	68	877	65	8 38	59	761	53	684	-	-	68	504	75	9 69
315M/80	90	81	1045	77	993	70	903	63	813	-	-	81	600	90	1160
315L/8	110	100	1290	95	1226	86	1110	77	994	-	-	100	742	110	1420


^{*} Betrieb nur mit Wicklungsausführung 230/400V möglich

Änderungen vorbehalten

⁻ Wicklungsausführung 230/400V ab Baugröße 280 auf Anfrage

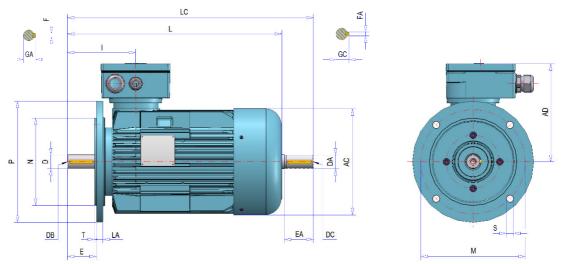

Ex-geschützte **Motoren Baureihe DEx** Maßblätter zu Motoren Baureihe DEx

Baugröße: 63 - 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 /

Bauformen: IM B3 - IM 1001 / IM V5 - IM 1011 / IM V6 - IM 1031

Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

		igen v													
Type	В	Α	K	Н	С	D/DA	E/EA	DB/DC	AC	AD	GA/GC	F/FA		L	LC
D_Ex 63 K/L	80	100	7	63	40	11	23	M5	125	147	12,5	4	87	238	269
D_Ex 71 K/L	90	112	9	71	45	14	30	M5	139	147	16	5	97	272	307
D_Ex 80 K/L	100	125	10	80	50	19	40	M6	157	169	21,5	6	117	319	362
D_Ex 80 V	100	125	10	80	50	19	40	M6	157	169	21,5	6	117	349	392
D_Ex 90 S	100	140	10	90	56	24	50	M8	177	181	27	8	129	363	415
D_Ex 90 L	125	140	10	90	56	24	50	M8	177	181	27	8	129	363	415
D_Ex 90 V	125	140	10	90	56	24	50	M8	177	181	27	8	129	408	460
D_Ex 100 L	140	160	12	100	63	28	60	M10	195	188	31	8	142	418	483
D_Ex 100 V	140	160	12	100	63	28	60	M10	195	188	31	8	142	487	552
D_Ex 112 M	140	190	12	112	70	28	60	M10	219	199	31	8	142	442	504
D_Ex 112 V	140	190	12	112	70	28	60	M10	219	199	31	8	142	502	564
D_Ex 132 S	140	216	12	132	89	38	80	M12	258	218	41	10	165	536	619
D_Ex 132 M	178	216	12	132	89	38	80	M12	258	218	41	10	165	536	619
D_Ex 132 V	178	216	12	132	89	38	80	M12	258	218	41	10	165	604	687
D_Ex 160 M	210	254	14	160	108	42	110	M16	310	276	45	12	255	669	785
D_Ex 160 L	254	254	14	160	108	42	110	M16	310	276	45	12	255	669	785
D_Ex 160 V	254	254	14	160	108	42	110	M16	310	276	45	12	255	790	849
D_Ex 180 M	241	279	14	180	121	48	110	M16	345	316	51	14	297	707	830
D_Ex 180 L	279	279	14	180	121	48	110	M16	345	316	51	14	297	707	830
D_Ex 180 V	279	279	14	180	121	48	110	M16	345	316	51	14	297	830	953
D_Ex 200 L	305	318	18	200	133	55	110	M20	385	346	59	16	308	790	910
D_Ex 200 V	305	318	18	200	133	55	110	M20	385	346	59	16	308	915	1035
D_Ex 225S	286	356	18	225	149	60	140	M20	435	364	64	18	340	884	1035
D_Ex 225M-2	311	356	18	225	149	55	110	M20	435	364	59	16	310	854	975
D_Ex 225M	311	356	18	225	149	60	140	M20	435	364	64	18	340	884	1035
D_Ex 225V	311	356	18	225	149	60	140	M20	435	364	64	18	340	975	1126
D_Ex 225V-2	311	356	18	225	149	60	140	M20	435	364	64	18	340	945	1066
D_Ex 250M-2	349	406	24	250	168	60	140	M20	491	437	64	18	410	1007	1160
D_Ex 250M	349	406	24	250	168	65	140	M20	491	437	69	18	410	1007	1160
D_Ex 280S-2	368	457	24	280	190	65	140	M20	537	464	69	18	410	1036	1191
D_Ex 280S	368	457	24	280	190	75	140	M20	537	464	79,5	20	410	1036	1191
D_Ex 280M-2	419	457	24	280	190	65	140	M20	537	464	69	18	410	1096	1096
D_Ex 280M	419	457	24	280	190	75	140	M20	537	464	79,5	20	410	1096	1251



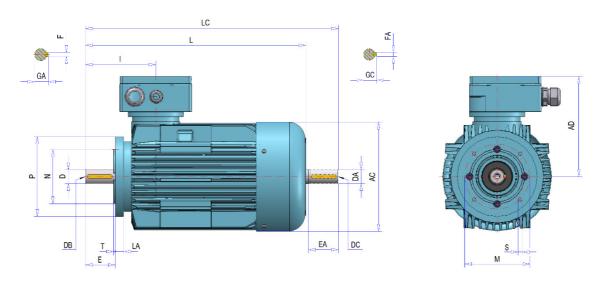
D_Ex 315S-2	406	508	28	315	216	65	140	M20	617	544	69	18	454	1050	1210
D_Ex 315S	406	508	28	315	216	80	170	M20	617	544	85	22	484	1080	1270
D_Ex 315M-2	457	508	28	315	216	65	140	M20	617	544	69	18	454	1220	1380
D_Ex 315M	457	508	28	315	216	80	170	M20	617	544	85	22	484	1250	1440
D_Ex 315M-20	457	508	28	315	216	65	140	M20	617	544	69	18	454	1220	1380
D_Ex 315M0	457	508	28	315	216	80	170	M20	617	544	85	22	484	1250	1440
D_Ex 315L-2	457	508	28	315	216	65	140	M20	617	544	69	18	454	1300	1460
D_Ex 315L	457	508	28	315	216	80	170	M20	617	544	85	22	484	1330	1520

Baugröße: 63 - 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 /

Bauformen: IM B5 - IM 3001 / IM V1 - IM 3011 / IM V3 - IM 3031

Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

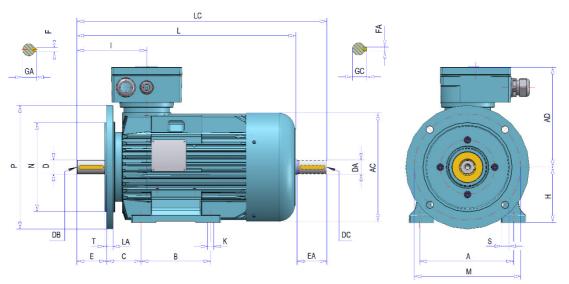
Туре	D/DA	E/EA	DB/DC	AC	AD	GA/GC	F/FA	ı	S	Χ	M	N	Р	Т	LA	L	LC
D_Ex 63 K/L	11	23	M5	125	147	12,5	4	87	9	4	115	95	140	3	8	238	269
D_Ex 71 K/L	14	30	M5	139	147	16	5	97	9	4	130	110	160	3,5	10	272	307
D_Ex 80 K/L	19	40	M6	157	169	21,5	6	117	12	4	165	130	200	3,5	10	319	362
D_Ex 80 V	19	40	M6	157	169	21,5	6	117	12	4	165	130	200	3,5	10	349	392
D_Ex 90 S	24	50	M8	177	181	27	8	129	12	4	165	130	200	3,5	10	363	415
D_Ex 90 L	24	50	M8	177	181	27	8	129	14	4	165	130	200	3,5	10	363	415
D_Ex 90 V	24	50	M8	177	181	27	8	129	14	4	165	130	200	3,5	10	408	460
D_Ex 100 L	28	60	M10	195	188	31	8	142	14	4	215	180	250	4	11	418	483
D_Ex 100 V	28	60	M10	195	188	31	8	142	14	4	215	180	250	4	11	487	552
D_Ex 112 M	28	60	M10	219	199	31	8	142	14	4	215	180	250	4	11	442	504
D_Ex 112 V	28	60	M10	219	199	31	8	142	14	4	215	180	250	4	11	502	564
D_Ex 132 S	38	80	M12	258	218	41	10	165	14	4	265	230	300	4	16	536	619
D_Ex 132 M	38	80	M12	258	218	41	10	165	14	4	265	230	300	4	16	536	619
D_Ex 132 V	38	80	M12	258	218	41	10	165	14	4	265	230	300	4	16	604	687
D_Ex 160 M	42	110	M16	310	276	45	12	255	18	4	300	250	350	4	19	669	785
D_Ex 160 L	42	110	M16	310	276	45	12	255	18	4	300	250	350	4	19	669	785
D_Ex 160 V	42	110	M16	310	276	45	12	255	18	4	300	250	350	4	19	790	849
D_Ex 180 M	48	110	M16	345	316	51	14	297	18	4	300	250	350	4	15	707	830
D_Ex 180 L	48	110	M16	345	316	51	14	297	18	4	300	250	350	4	15	707	830
D_Ex 180 V	48	110	M16	345	316	51	14	297	18	4	300	250	350	4	15	830	953
D_Ex 200L	55	110	M20	385	346	59	16	308	18	4	350	300	400	4	18	790	910
D_Ex 200V	55	110	M20	385	346	59	16	308	18	4	350	300	400	4	18	915	1035
D_Ex 225S	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	884	1035
D_Ex 225M-2	55	110	M20	435	364	59	16	310	18	8	400	350	450	8	18	854	975
D_Ex 225M	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	884	1035
D_Ex 225V	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	975	1126
D_Ex 225V-2	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	945	1066
D_Ex 250M-2	60	140	M20	491	437	64	18	410	19	8	500	450	550	8	18	1007	1160
D_Ex 250M	65	140	M20	491	437	69	18	410	19	8	500	450	550	8	18	1007	1160
D_Ex 280S-2	65	140	M20	537	464	69	18	410	19	8	500	450	550	8	18	1036	1191
D_Ex 280S	75	140	M20	537	464	79,5	20	410	19	8	500	450	550	8	18	1036	1191
D_Ex 280M-2	65	140	M20	537	464	69	18	410	19	8	500	450	550	8	18	1096	1096
D_Ex 280M	75	140	M20	537	464	79,5	20	410	19	8	500	450	550	8	18	1096	1251



D_Ex 315S-2	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1050	1210
D_Ex 315S	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1080	1270
D_Ex 315M-2	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1220	1380
D_Ex 315M	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1250	1440
D_Ex 315M-20	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1220	1380
D_Ex 315M0	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1250	1440
D_Ex 315L-2	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1300	1460
D_Ex 315L	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1330	1520

X Anzahl der Bohrungen

Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B14 – IM 3601 / IM V18 – IM 3611 / IM V19 – IM 3631


Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

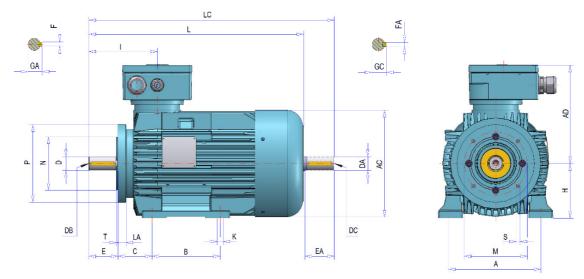
		90	Denaite	• •													
Туре	D/DA	E/EA	DB/DC	AC	AD	GA/GC	F/FA	- 1	S	X	M	N	Р	Т	LA	L	LC
D_Ex 63 K/L	11	23	M5	125	147	12,5	4	87	M5	4	75	60	90	2,5	14	238	269
D_Ex 71 K/L	14	30	M5	139	147	16	5	97	M6	4	85	70	105	2,5	20	272	307
D_Ex 80 K/L	19	40	M6	157	169	21,5	6	117	M6	4	100	80	120	3	10	319	362
D_Ex 80 V	19	40	M6	157	169	21,5	6	117	M6	4	100	80	120	3	10	349	392
D_Ex 90 S	24	50	M8	177	181	27	8	129	M8	4	115	95	140	3	10	363	415
D_Ex 90 L	24	50	M8	177	181	27	8	129	M8	4	115	95	140	3	10	363	415
D_Ex 90 V	24	50	M8	177	181	27	8	129	M8	4	115	95	140	3	10	408	460
D_Ex 100 L	28	60	M10	195	188	31	8	142	M8	4	130	110	160	3,5	17	418	483
D_Ex 100 V	28	60	M10	195	188	31	8	142	M8	4	130	110	160	3,5	17	487	552
D_Ex 112 M	28	60	M10	219	199	31	8	142	M8	4	130	110	160	3,5	17	442	504
D_Ex 112 V	28	60	M10	219	199	31	8	142	M8	4	130	110	160	3,5	17	502	564
D_Ex 132 S	38	80	M12	258	218	41	10	165	M10	4	165	130	200	3,5	23	536	619
D_Ex 132 M	38	80	M12	258	218	41	10	165	M10	4	165	130	200	3,5	23	536	619
D_Ex 132 V	38	80	M12	258	218	41	10	165	M10	4	165	130	200	3,5	23	604	687
D_Ex 160 M	42	110	M16	310	276	45	12	255	M12	4	215	180	250	4	17	669	785
D_Ex 160 L	42	110	M16	310	276	45	12	255	M12	4	215	180	250	4	17	669	785
D_Ex 160 V	42	110	M16	310	276	45	12	255	M12	4	215	180	250	4	17	790	849

X Anzahl der Bohrungen

Baugröße: 63-315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B35 – IM 2001 / IM V15 – IM 2011 / IM V35 – IM 2031

Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Туре	В	Α	K	Н	С	D/DA	E/EA	DB/DC	AC	AD	GA/GC	F/FA	ı	S	Χ	M	N	Р	Т	LA	L	LC
D_Ex 63 K/L	80	100	7	63	40	11	23	M5	125	147	12,5	4	87	9	4	115	95	140	3	8	238	269
D_Ex 71 K/L	90	112	9	71	45	14	30	M5	139	147	16	5	97	9	4	130	110	160	3,5	10	272	307
D_Ex 80 K/L	100	125	10	80	50	19	40	M6	157	169	21,5	6	117	12	4	165	130	200	3,5	10	319	362
D_Ex 80 V	100	125	10	80	50	19	40	M6	157	169	21,5	6	117	12	4	165	130	200	3,5	10	349	392
D_Ex 90 S	100	140	10	90	56	24	50	M8	177	181	27	8	129	12	4	165	130	200	3,5	10	363	415
D_Ex 90 L	125	140	10	90	56	24	50	M8	177	181	27	8	129	14	4	165	130	200	3,5	10	363	415
D_Ex 90 V	125	140	10	90	56	24	50	M8	177	181	27	8	129	14	4	165	130	200	3,5	10	408	460
D_Ex 100 L	140	160	12	100	63	28	60	M10	195	188	31	8	142	14	4	215	180	250	4	11	418	483
D_Ex 100 V	140	160	12	100	63	28	60	M10	195	188	31	8	142	14	4	215	180	250	4	11	487	552
D_Ex 112 M	140	190	12	112	70	28	60	M10	219	199	31	8	142	14	4	215	180	250	4	11	442	504
D_Ex 112 V	140	190	12	112	70	28	60	M10	219	199	31	8	142	14	4	215	180	250	4	11	502	564
D_Ex 132 S	140	216	12	132	89	38	80	M12	258	218	41	10	165	14	4	265	230	300	4	16	536	619
D_Ex 132 M	178	216	12	132	89	38	80	M12	258	218	41	10	165	14	4	265	230	300	4	16	536	619
D_Ex 132 V	178	216	12	132	89	38	80	M12	258	218	41	10	165	14	4	265	230	300	4	16	604	687
D_Ex 160 M	210	254	14	160	108	42	110	M16	310	276	45	12	255	18	4	300	250	350	4	19	669	785
D_Ex 160 L	254	254	14	160	108	42	110	M16	310	276	45	12	255	18	4	300	250	350	4	19	669	785
D_Ex 160 V	254	254	14	160	108	42	110	M16	310	276	45	12	255	18	4	300	250	350	4	19	790	849
D_Ex 180 M	241	279	14	180	121	48	110	M16	345	316	51	14	297	18	4	300	250	350	4	15	707	830
D_Ex 180 L	279	279	14	180	121	48	110	M16	345	316	51	14	297	18	4	300	250	350	4	15	707	830
D_Ex 180 V	279	279	14	180	121	48	110	M16	345	316	51	14	297	18	4	300	250	350	4	15	830	953
D_Ex 200L	305	318	18	200	133	55	110	M20	385	346	59	16	308	18	4	350	300	400	4	18	790	910
D_Ex 200L	305	318	18	200	133	55	110	M20	385	346	59	16	308	18	4	350	300	400	4	18	915	1035
D_Ex 225S	286	356	18	225	149	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	884	1035
D_Ex 225M-2	311	356	18	225	149	55	110	M20	435	364	59	16	310	18	8	400	350	450	8	18	854	975
D_Ex 225M	311	356	18	225	149	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	884	1035
D_Ex 225V	311	356	18	225	149	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	975	1126
D_Ex 225V-2	311	356	18	225	149	60	140	M20	435	364	64	18	340	18	8	400	350	450	8	18	945	1066
D_Ex 250M-2	349	406	24	250	168	60	140	M20	491	437	64	18	410	19	8	500	450	550	8	18	1007	1160
D_Ex 250M	349	406	24	250	168	65	140	M20	491	437	69	18	410	19	8	500	450	550	8	18	1007	1160
D_Ex 280S-2	368	457	24	280	190	65	140	M20	537	464	69	18	410	19	8	500	450	550	8	18	1036	1191
D_Ex 280S	368	457	24	280	190	75	140	M20	537	464	79,5	20	410	19	8	500	450	550	8	18	1036	1191
D_Ex 280M-2	419	457	24	280	190	65	140	M20	537	464	69	18	410	19	8	500	450	550	8	18	1096	1096
D_Ex 280M	419	457	24	280	190	75	140	M20	537	464	79,5	20	410	19	8	500	450	550	8	18	1096	1251



D_Ex 315S-2	406	508	28	315	216	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1050	1210
D_Ex 315S	406	508	28	315	216	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1080	1270
D_Ex 315M-2	457	508	28	315	216	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1220	1380
D_Ex 315M	457	508	28	315	216	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1250	1440
D_Ex 315M-20	457	508	28	315	216	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1220	1380
D_Ex 315M0	457	508	28	315	216	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1250	1440
D_Ex 315L-2	457	508	28	315	216	65	140	M20	617	544	69	18	454	24	8	600	550	660	8	18	1300	1460
D_Ex 315L	457	508	28	315	216	80	170	M20	617	544	85	22	484	24	8	600	550	660	8	18	1330	1520

X Anzahl der Bohrungen

Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B34 – IM 2101 / IM V17 – IM 2111 / IM V37 – IM 2131

Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Туре	В	Α	K	Н	С	D/DA	E/EA	DB/DC	AC	AD	GA/GC	F/FA	-	S	Χ	М	N	Р	Т	LA	L	LC
D_Ex 63 K/L	80	100	7	63	40	11	23	M5	125	147	12,5	4	87	M5	4	75	60	90	2,5	14	238	269
D_Ex 71 K/L	90	112	9	71	45	14	30	M5	139	147	16	5	97	M6	4	85	70	105	2,5	20	272	307
D_Ex 80 K/L	100	125	10	80	50	19	40	M6	157	169	21,5	6	117	M6	4	100	80	120	3	10	319	362
D_Ex 80 V	100	125	10	80	50	19	40	M6	157	169	21,5	6	117	M6	4	100	80	120	3	10	349	392
D_Ex 90 S	100	140	10	90	56	24	50	M8	177	181	27	8	129	M8	4	115	95	140	3	10	363	415
D_Ex 90 L	125	140	10	90	56	24	50	M8	177	181	27	8	129	M8	4	115	95	140	3	10	363	415
D_Ex 90 V	125	140	10	90	56	24	50	M8	177	181	27	8	129	M8	4	115	95	140	3	10	408	460
D_Ex 100 L	140	160	12	100	63	28	60	M10	195	188	31	8	142	M8	4	130	110	160	3,5	17	418	483
D_Ex 100 V	140	160	12	100	63	28	60	M10	195	188	31	8	142	M8	4	130	110	160	3,5	17	487	552
D_Ex 112 M	140	190	12	112	70	28	60	M10	219	199	31	8	142	M8	4	130	110	160	3,5	17	442	504
D_Ex 112 V	140	190	12	112	70	28	60	M10	219	199	31	8	142	M8	4	130	110	160	3,5	17	502	564
D_Ex 132 S	140	216	12	132	89	38	80	M12	258	218	41	10	165	M10	4	165	130	200	3,5	23	536	619
D_Ex 132 M	178	216	12	132	89	38	80	M12	258	218	41	10	165	M10	4	165	130	200	3,5	23	536	619
D_Ex 132 V	178	216	12	132	89	38	80	M12	258	218	41	10	165	M10	4	165	130	200	3,5	23	604	687
D_Ex 160 M	210	254	14	160	108	42	110	M16	310	276	45	12	255	M12	4	215	180	250	4	17	669	785
D_Ex 160 L	254	254	14	160	108	42	110	M16	310	276	45	12	255	M12	4	215	180	250	4	17	669	785
D_Ex 160 V	254	254	14	160	108	42	110	M16	310	276	45	12	255	M12	4	215	180	250	4	17	790	849

X Anzahl der Bohrungen

Ex-geschützte Drehstrombremsmotoren

Motoren mit Bremse

Bremsmotoren sind Drehstromasynchronmotoren mit Käfigläufer, die mit einer mechanischen Federkraftbremse (ruhestrombetätigt) ausgerüstet sind. Die Bremsen sind mit einem eigenen Klemmenkasten ausgerüstet. Die Wicklung des Motors wird durch den Bremsvorgang thermisch nicht belastet. Die Bremsmotoren werden für Hub- und Fahrantriebe, Werkzeugmaschinen, Verpackungsmaschinen, Transport- und Fördertechnik, Verstellantriebe usw. verwendet.

Die Bremsmotoren zeichnen sich aus durch:

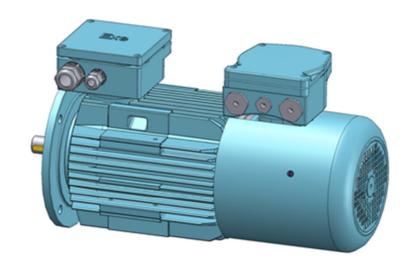
- Verkürzung der Nebenzeiten durch kurze Motorauslaufzeiten
- Haltebremse bei Stromausfall
- genaues Einfahren in eine bestimmte Position
- Erhöhung der Schalthäufigkeit des Motors
- Anpassung des Bremsmomentes an die Arbeitsbedingungen
- hohe Betriebssicherheit aufgrund robuster Konstruktion
- hohe Lebensdauer

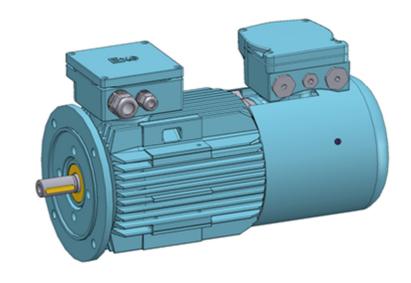
Die Bremsmotoren sind mit folgenden Bremsen lieferbar:

- Motoren mit angebauter Bremse (Baugröße 71 bis 132) Typ BM
- Motoren mit angebauter Bremse/Lüfterseite (Baugröße71 bis 180) Typ KB (Kendrion)
- Motoren mit angebauter Bremse/Flanschseite (Baugröße 63 bis 280) Typ BD (VIS)

Sie sind ausschließlich für den Trockenlauf konstruiert.

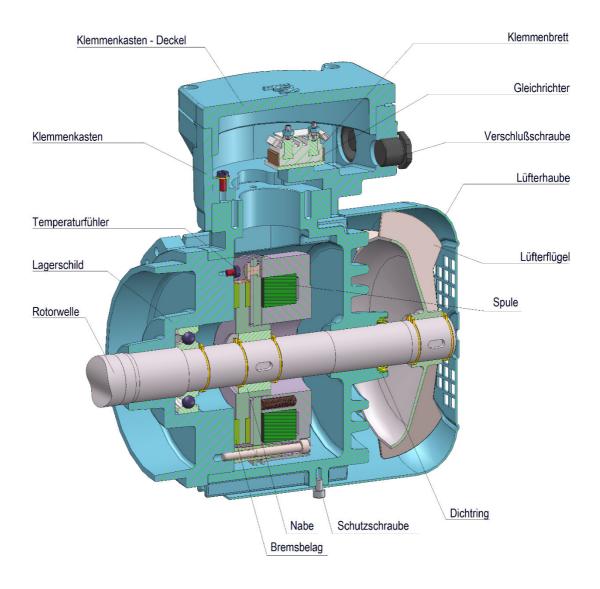
Spannung und Schaltungsart


Neben den Standardspannungen 24V=, 103V=, 180V= und 205V= können die Bremsen auch für andere Spannungen geliefert werden. Zum Anschluss der Bremsen an eine Wechselspannungsversorgung wird ein Gleichrichter verwendet. Diese Gleichrichter wurden speziell für die Speisung von Gleichstrom-Magnetspulen entwickelt und sind gegen Spannungsspitzen, die bei Schaltvorgängen, Prellerscheinungen, überlangen Zuleitungen, schlechten Netzverhältnissen eintreten, durch eine Varistorschutzbeschaltung geschützt. Die Bremsmotoren können mit Einweg- oder Brückengleichrichtern versehen sein, die im Klemmenkasten untergebracht sind.


Bremsmotoren-Leistungsdaten

Bremsengröße und Motorbaugröße sind in der Regel einander so zugeordnet, dass die mit dem Bremsmotor zu erzielende Schalthäufigkeit nicht durch die Bremse, sondern durch die Motorerwärmung begrenzt ist. Die zulässige Schalthäufigkeit, die mittels Trägheitsfaktor, Gegenmomentfaktor und Lastfaktor errechnet wird, kann in den meisten Fällen auch für die Federkraftbremse als zulässige Bremsschalthäufigkeit angenommen werden. Diese muss größer sein als die verlangte Anzahl von Anläufen oder Bremsvorgängen pro Stunde.

Motoren mit eingebauter Bremse / Typ BM



Diese Bremse ist eine Einscheibenbremse mit zwei Reibflächen. Durch eine oder mehrere Druckfedern wird im stromlosen Zustand das Bremsmoment durch Reibschluss erzeugt. Das Lösen der Bremse erfolgt elektromagnetisch.

Zum Lüften der Bremse wird die Spule des Magnetteils mit Gleichspannung erregt. Die entstehende Magnetkraft zieht die Ankerscheibe gegen die Federkraft an das Magnetteil. Der Rotor ist damit von der Federkraft entlastet und kann sich frei drehen.

Erzeugung des Bremsmomentes

Beim Bremsvorgang wird der auf der Nabe oder Welle axial verschiebbare Rotor durch die Druckfedern über die Ankerscheibe an die Gegenreibfläche gedrückt. Im gebremsten Zustand ist zwischen Ankerscheibe und Magnetteil der Luftspalt S_{Iū} vorhanden.

Technische Daten zu Motoren mit eingebauter Bremse / Typ BM

Baugröße/Type	Bremsmoment	Max. Dehzahl	Nenneingangs-	Trägheitsmoment
	[Nm]	n _{max} . [min ⁻¹]	leistung	J _B kgm² . 10 ⁻⁴
			P _{20°C} [W]	
D_Ex 71-BM5	5	6000	22	0,13
D_Ex 80-BM10	10	6000	28	0,45
D_Ex 90-BM20	20	6000	34	1,6
D_Ex 100-BM40	40	6000	42	3,6
D_Ex 112-BM60	60	3600	50	4,7
D_Ex 132-BM100	100	3600	64	11,0

Zuordnung Motorbaugröße / Bremsmoment (reduzierte Bremsmomente auf Anfrage)

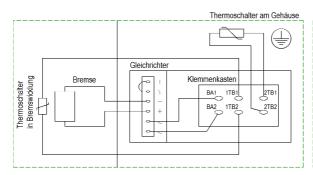
Bremse Typ BM	ВМ5	BM10	BM20	BM40	ВМ60	BM100
Bremsmoment [Nm]	5	10	20	40	60	100

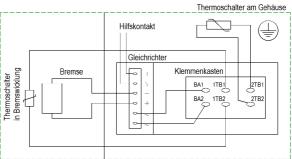
Baugröße 71	х					
Baugröße 80		x				
Baugröße 90			x			
Baugröße 100				x		
Baugröße 112					X	
Baugröße 132						x

Ausführung

Die Bremsen entsprechen den Zündschutzarten II 2G Ex d IIC Gb sowie II 2D Ex tb IIIC Db und sind somit für den Einsatz in Zone 1 und Zone 2, sowie Zone 21 und Zone 22 zugelassen. Standardmäßig sind die Bremsen für einen Temperaturbereich von –20°C bis +40°C einsetzbar (Sonderausführung – 50°C bis +60°C lieferbar). Zur Temperaturüberwachung sind die Bremsen mit Thermoschalter ausgerüstet.

Sonderausführungen auf Anfrage lieferbar.

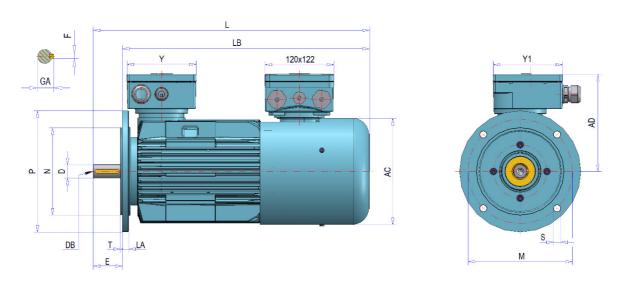

Die Bremsmotoren in Ausführung "eingebauter Bremse/Typ BM" können in zwei Grundschaltungsarten geschaltet werden:


Wechselstromseitiges Schalten

Serienmäßig werden Gleichrichter wechselstromseitig an die Motorklemmen und gleichstromseitig an die Bremsspule angeschlossen. Es ergibt sich ein weiches, verzögertes Einfallen der Bremse.

Gleichstromseitiges Schalten

Der Gleichrichter wird wechselstromseitig am Motorklemmen-brett angeschlossen. Beim Abschalten wird der Gleichstromkreis zwischen Gleichrichter und Bremsenspule über einen Hilfskontakt des Motorschutzschalters unterbrochen.



Maßblätter zu Motoren mit eingebauter Bremse / Typ BM

Baugröße: 71 - 132 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B5 – IM 3001 / IM V1 – IM 3011 / IM V3 – IM 3031

Passungen und Toleranzen siehe (Abschnitt Passungen und Toleranzen) Änderungen vorbehalten

Туре		D	Е	DB	AC	AD	Υ	Y1	GA	F	L	LB	S	X	M	N	Р	T	LA
D_Ex 71 K/L	BM5	14	30	M5	139	147	124	132	16	5	331	301	9	4	130	110	160	3,5	9
D_Ex 80 K/L	BM10	19	40	М6	157	169	144	144	21,5	6	363	323	11	4	165	130	200	3,5	10
D_Ex 80 V	BM10	19	40	М6	157	169	144	144	21,5	6	393	353	11	4	165	130	200	3,5	10
D_Ex 90 S	BM20	24	50	М8	177	181	144	144	27	8	395	345	11	4	165	130	200	3,5	10
D_Ex 90 L	BM20	24	50	M8	177	181	144	144	27	8	420	370	11	4	165	130	200	3,5	10
D_Ex 90 V	BM20	24	50	M8	177	181	144	144	27	8	460	410	11	4	165	130	200	3,5	10
D_Ex 100 L	BM40	28	60	M10	195	188	144	144	31	8	450	390	13,5	4	215	180	250	4	11
D_Ex 100 V	BM40	28	60	M10	195	188	144	144	31	8	520	460	13,5	4	215	180	250	4	11
D_Ex 112 M	BM60	28	60	M10	219	199	144	144	31	8	509	449	13,5	4	215	180	250	4	11
D_Ex 112 V	BM60	28	60	M10	219	199	144	144	31	8	569	509	13,5	4	215	180	250	4	11
D_Ex 132 S	BM100	38	80	M12	253	218	144	144	41	10	573	493	13,5	4	265	230	300	4	12
D_Ex 132 M	BM100	38	80	M12	253	218	144	144	41	10	611	531	13,5	4	265	230	300	4	12
D_Ex 132 V	BM100	38	80	M12	253	218	144	144	41	10	671	601	13,5	4	265	230	300	4	12

Motoren mit eingebauter Bremse / Typ KB (Kendrion)

Technische Daten zu Motoren mit eingebauter Bremse / Typ KB (Kendrion)

Baugröße/Type	Bremsmoment	Max. Dehzahl	Nenneingangs-	Trähheitsmoment
	[Nm]	n _{max} . [min ⁻¹]	leistung	J _B kgm² . 10 ⁻⁴
			P _{20°C} [W]	
KB-Gr.10	10	6000	56	2,5
KB-Gr.11	20	6000	56	2,5
KB-Gr.13	50	3000	82	22
KB-Gr.16	100	3000	82	22
KB-Gr.19	150	3000	91	125
KB-Gr.24	330	3000	91	125

Zuordnung Motorbaugröße / Bremsmoment (reduzierte Bremsmomente auf Anfrage)

Bremse Typ KB	KB10	KB20	KB50	KB100	KB150	KB330
Bremsmoment [Nm]	10	20	50	100	150	330

Baugröße 71	x	0				
Baugröße 80	0	х				
Baugröße 90	0	x				
Baugröße 100			x	0		
Baugröße 112			x	0		
Baugröße 132			0	X		
Baugröße 160				0	X	0
Baugröße 180					0	X

x = normale Zuordnung

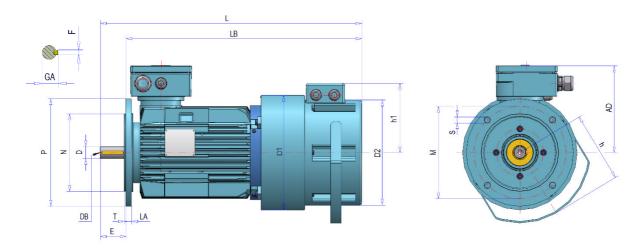
o = mögliche Zuordnung

Ausführung

Die Bremsen entsprechen den Zündschutzarten II 2G Ex de IIC T5 sowie II 2D Ex tD A21 IP67 T100°C und sind somit für den Einsatz in Zone 1 und Zone 2, sowie Zone 21 und Zone 22 zugelassen. Standardmäßig sind die Bremsen für einen Temperaturbereich von –20°C bis +40°C einsetzbar. Zur Temperaturüberwachung sind die Bremsen mit Thermoschalter ausgerüstet.

Sonderausführungen:

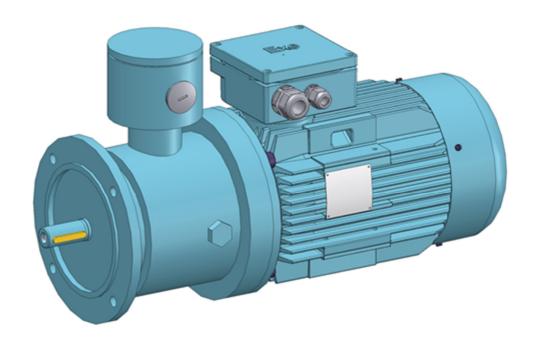
- Bremsen mit Handlüftung
 - Wahlweise kann die Bremse auch mit Handlüftung geliefert werden. Durch den Zug am Handlüfthebel im stromlosem Zustand wird die Bremse mechanisch gelüftet und die Welle lässt sich leicht drehen
- Temperaturüberwachung mit Kaltleitertemperaturfühler (PTC) anstatt Thermoschalter


Datum: 10.06.2025 Version: 2.6

Gesamtkatalog Herforder-Elektromotoren-Werke

Maßblätter zu Motoren mit eingebauter Bremse / Typ KB (Kendrion)

Baugröße: 71 - 180 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B5 – IM 3001 / IM V1 – IM 3011 / IM V3 – IM 3031



Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Туре		D	E	DB	D1	D2	AD	h	h1	GA	F	L	LB	S	X	М	N	Р	T	LA
D_Ex 71 K/L	KB10	14	30	M5	192	178	147	134	133	16	5	420	390	9	4	130	110	160	3,5	10
D_Ex 80 K/L	KB11	19	40	M6	192	178	169	134	133	21,5	6	460	420	12	4	165	130	200	3,5	10
D_Ex 80 V	KB11	19	40	M6	192	178	169	134	133	21,5	6	490	450	12	4	165	130	200	3,5	10
D_Ex 90 S	KB11	24	50	M8	220	178	181	134	133	27	8	510	460	12	4	165	130	200	3,5	10
D_Ex 90 L	KB11	24	50	M8	220	178	181	134	133	27	8	510	460	12	4	165	130	200	3,5	10
D_Ex 90 V	KB11	24	50	M8	220	178	181	134	133	27	8	555	505	12	4	165	130	200	3,5	10
D_Ex 100 L	KB13	28	60	M10	267	245	188	164	161	31	8	590	530	14	4	215	180	250	4	11
D_Ex 100 V	KB13	28	60	M10	267	245	188	164	161	31	8	659	599	14	4	215	180	250	4	11
D_Ex 112 M	KB13	28	60	M10	267	245	199	164	161	31	8	610	550	14	4	215	180	250	4	11
D_Ex 112 V	KB13	28	60	M10	267	245	199	164	161	31	8	670	610	14	4	215	180	250	4	11
D_Ex 132 S	KB16	38	80	M12	301	245	218	164	161	41	10	736	656	14	4	265	230	300	4	16
D_Ex 132 M	KB16	38	80	M12	301	245	218	164	161	41	10	736	656	14	4	265	230	300	4	16
D_Ex 132 V	KB16	38	80	M12	301	245	218	164	161	41	10	804	724	14	4	265	230	300	4	16
D_Ex 160 M	KB19	42	110	M16	350	330	276	215	205	45	12	850	740	18	4	300	250	350	5	19
D_Ex 160 L	KB19	42	110	M16	350	330	276	215	205	45	12	850	740	18	4	300	250	350	5	19
D_Ex 160 V	KB19	42	110	M16	350	330	276	215	205	45	12	971	861	18	4	300	250	350	5	19
D_Ex 180 M	KB24	48	110	M16	405	330	302	215	205	51	14	914	804	18	4	300	250	350	5	15
D_Ex 180 L	KB24	48	110	M16	405	330	302	215	205	51	14	914	804	18	4	300	250	350	5	15
D_Ex 180 V	KB24	48	110	M16	405	330	302	215	205	51	14	1037	927	18	4	300	250	350	5	15

Motoren mit eingebauter Bremse / Typ BD (VIS)

Technische Daten zu Motoren mit eingebauter Bremse / Typ BD (VIS)

Baugröße/Type	Bremsmoment	Max. Dehzahl	Nenneingangs-	Trähheitsmoment	Gewicht
	[Nm]	n _{max} . [min ⁻¹]	leistung	J _B kgm ² . 10 ⁻⁴	(Bremse)
			P _{20°C} [W]		[ca. kg]
VIS 63	8	3600	40	1,85	15
VIS 71	8	3600	40	1,90	16
VIS 80	22	3600	50	3,95	32
VIS 90	22	3600	50	3,95	34
VIS 100	40	3600	80	8,6	50
VIS 112	60	3600	80	8,6	50
VIS 132	150	3600	105	33,2	78
VIS 160	180	2800	105	33,8	82
VIS 180	335	2500	180	54	135
VIS 200	460	2500	180	54	150
VIS 225	500	2500	180	57	175

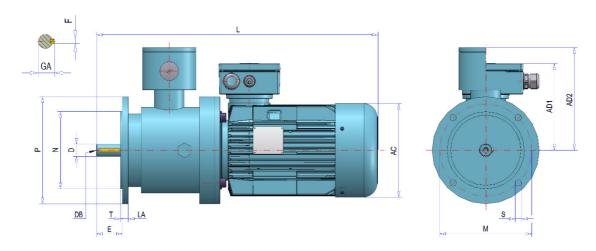
Zuordnung Motorbaugröße / Bremsmoment (reduzierte Bremsmomente auf Anfrage)

Bremse Typ BD	BD8	BD22	BD40	BD60	BD150	BD180	BD335	BD460	BD500
Bremsmoment [Nm]	8	22	40	60	150	180	335	460	500
	-						-	-	
Baugröße 63	x								
Baugröße 71	х								
Baugröße 80		х							
Baugröße 90		х							
Baugröße 100			х						
Baugröße 112				х					
Baugröße 132					х				
Baugröße 160						х			
Baugröße 180							х		
Baugröße 200								х	
Baugröße 225									x

Ausführung

Die Bremsen entsprechen den Zündschutzarten II 2G Ex d IIC T5 Gb sowie II 2D Ex tb IIIC T100°C und sind somit für den Einsatz in Zone 1 und Zone 2, sowie Zone 21 und Zone 22 zugelassen. Standardmäßig sind die Bremsen für einen Temperaturbereich von

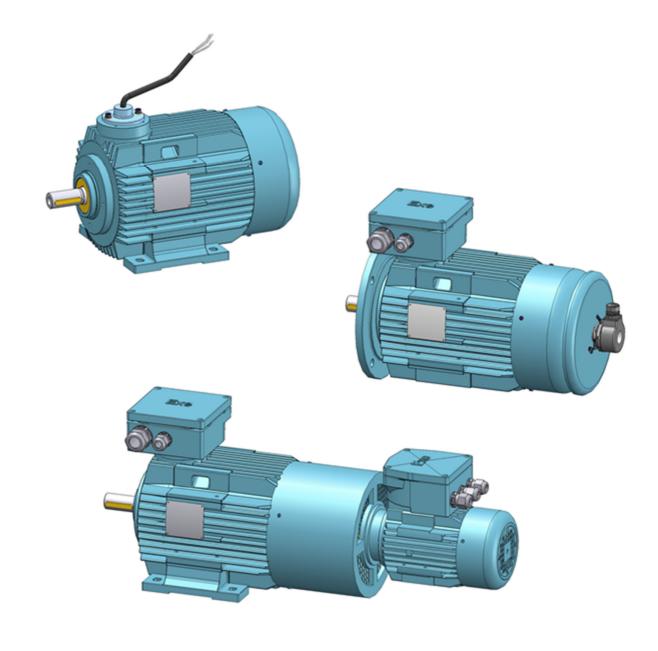
-50°C bis +60°C einsetzbar. Zur Temperaturüberwachung sind die Bremsen mit einem Thermoschalter ausgerüstet.


Sonderausführungen:

- Bremsen mit Handlüftung
 - Wahlweise kann die Bremse auch mit Handlüftung geliefert werden. Durch den Zug am Handlüfthebel im stromlosem Zustand wird die Bremse mechanisch gelüftet und die Welle lässt sich leicht drehen
- Bremsen mit Stillstandsheizung gegen Kondensat
- Temperaturüberwachung mit Kaltleitertemperaturfühler (PTC) anstatt Thermoschalter
- Bremsmotoren mit zweitem Wellenende
- Bremsmotoren mit Zusatzschwungmasse
 - Die Zusatzschwungmasse dient zum ruckfreien Anfahren und Abbremsen und ist unter der Lüfterhaube eingebaut.
- Bremsmotoren mit Fremdlüfter und/oder Hohlwellengeber

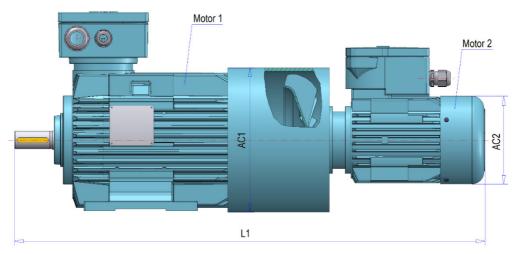
Maßblätter zu Motoren mit eingebauter Bremse / Typ BD (VIS)

Baugröße: 63-225 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Bauformen: IM B5 – IM 3001 / IM V1 – IM 3011 / IM V3 – IM 3031



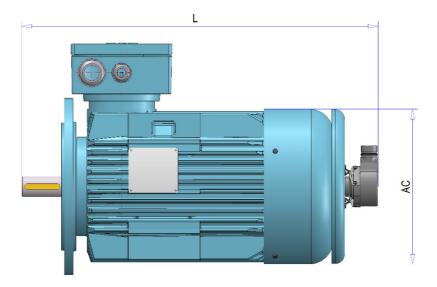
Passungen und Toleranzen siehe (*Abschnitt Passungen und Toleranzen*) Änderungen vorbehalten

Туре	-	D	Е	DB	AC	AD1	AD2	GA	F	S	X	M	N	Р	Т	LA	L
D_Ex 63 K/L	BD8	11	23	M5	125	147	169	12,5	4	9	4	115	95	140	3	10	383
D_Ex 71 K/L	BD8	14	30	M5	139	147	169	16	5	9	4	130	110	160	3,5	10	417
D_Ex 80 K/L	BD22	19	40	M6	157	169	199	21,5	6	12	4	165	130	200	3,5	12	515
D_Ex 80 V	BD22	19	40	M6	157	169	199	21,5	6	12	4	165	130	200	3,5	12	545
D_Ex 90 S/L	BD22	24	50	M8	177	181	199	27	8	12	4	165	130	200	3,5	120	558
D_Ex 90 V	BD22	24	50	M8	177	181	199	27	8	12	4	165	130	200	3,5	120	603
D_Ex 100 L	BD40	28	60	M10	195	188	224	31	8	14	4	215	180	250	4	14	632
D_Ex 100 V	BD40	28	60	M10	195	188	224	31	8	14	4	215	180	250	4	14	701
D_Ex 112 M	BD60	28	60	M10	219	199	224	31	8	14	4	215	180	250	4	14	654
D_Ex 112 V	BD60	28	60	M10	219	199	224	31	8	14	4	215	180	250	4	14	714
D_Ex 132 S/M	BD150	38	80	M12	258	218	249	41	10	14	4	265	230	300	4	18	777
D_Ex 132 V	BD150	38	80	M12	258	218	249	41	10	14	4	265	230	300	4	18	845
D_Ex 160 M/L	BD180	42	110	M16	310	276	249	45	12	18	4	300	250	350	4	18	911
D_Ex 160 V	BD180	42	110	M16	310	276	249	45	12	18	4	300	250	350	4	18	1032
D_Ex 180 M/L	BD335	48	110	M16	345	316	267	51	14	18	4	300	250	350	4	21	1009
D_Ex 180 V	BD335	48	110	M16	345	316	267	51	14	18	4	300	250	350	4	21	1132
D_Ex 200L	BD460	55	110	M20	385	346	267	59	16	18	4	350	300	400	4	21	1098
D_Ex 200V	BD460	55	110	M20	385	346	267	59	16	18	4	350	300	400	4	21	1223
D_Ex 225S	BD500	60	140	M20	435	364	267	64	18	18	8	400	350	450	4	21	1154
D_Ex 225M-2	BD500	55	110	M20	435	364	267	59	16	18	8	400	350	450	4	21	1124
D_Ex 225M	BD500	60	140	M20	435	364	267	64	18	18	8	400	350	450	4	21	1154
D_Ex 225V	BD500	60	140	M20	435	364	267	64	18	18	8	400	350	450	4	21	1247
D_Ex 225V-2	BD500	55	110	M20	435	364	267	59	16	18	8	400	350	450	4	21	1217


Ex-geschützte Drehstrommotoren in Sonderausführung

Ex-geschützte Drehstrommotoren in Sonderausführung: Fremdlüfter

Baugröße: 80 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Optional können die Motoren mit Fremdlüfter geliefert werden (siehe Kühlung (Belüftung))



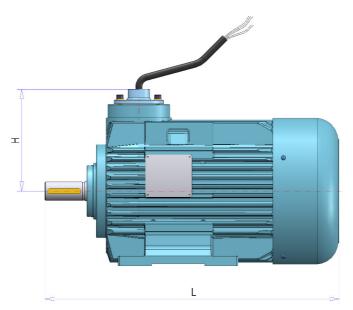
Änderungen vorbehalten

Туре	Motor 2	AC1	AC2	L1	Gewicht
(Motor 1)	(Type)				(4pol - B3)
					[ca. in Kg]
D_Ex 80 K/L	71K/2	159	139	614	44 / 46
D_Ex 80 V	71K/2	159	139	644	47
D_Ex 90 S/L	71K/2	180	139	637	52 / 55
D_Ex 90 V	71K/2	180	139	682	61
D_Ex 100 LA/LB	71K/2	198	139	695	63 / 66
D_Ex 100 V	71K/2	198	139	765	78
D_Ex 112 M	71K/2	222	139	726	81
D_Ex 112 V	71K/2	222	139	786	99
D_Ex 132 S/M	71K/2	261	139	822	106 / 116
D_Ex 132 V	71K/2	261	139	890	143
D_Ex 160 M/L	71K/2	317	139	954	188 / 207
D_Ex 160 V	71K/2	317	139	1075	229
D_Ex 180M/L	80K/4	355	157	1026	256 / 277
D_Ex 180V	80K/4	355	157	1149	334
D_Ex 200L	80K/4	391	157	1135	296
D_Ex 200V	80K/4	391	157	1260	372
D_Ex 225S	80K/4	439	157	1218	360
D_Ex 225M-2	80K/4	439	157	1184	425
D_Ex 225M	80K/4	439	157	1218	440
D_Ex 225V	80K/4	439	157	1311	500
D_Ex 250M-2	90L/4	491	177	1380	528
D_Ex 250M	90L/4	491	177	1380	523
D_Ex 280S-2	90L/4	537	177	1422	695
D_Ex 280S	90L/4	537	177	1422	655
D_Ex 280M-2	90L/4	537	177	1482	745
D_Ex 280M	90L/4	537	177	1482	730
DEx 315S-2	90L/4	617	177	1429	867
DEx 315S	90L/4	617	177	1459	867
DEx 315M-2	90L/4	617	177	1599	977
DEx 315M	90L/4	617	177	1629	977
DEx 315M-20	90L/4	617	177	1599	1287
DEx 315M0	90L/4	617	177	1629	1287
DEx 315L-2	90L/4	617	177	1679	1427
DEx 315L	90L/4	617	177	1709	1427

Ex-geschützte Drehstrommotoren in Sonderausführung: Hohlwellengeber Baugröße: 63 – 315 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Optional können die Motoren mit Hohlwellengeber geliefert werden (siehe Kühlung (Belüftung))

Änderungen vorbehalten

Туре	AC	L	Gewicht
(Motor 1)			(4pol - B3)
			[ca. in kg]
D_Ex 63 K/L	125	353	15 / 16
D_Ex 71 K/L	139	386	17 / 18
D_Ex 80 K/L	157	435	26 / 28
D_Ex 80 V	157	465	31
D_Ex 90 S/L	177	478	34 / 37
D_Ex 90 V	177	523	43
D_Ex 100 LA/LB	195	534	45 / 48
D_Ex 100 V	165	604	60
D_Ex 112 M	219	556	62
D_Ex 112 V	219	616	80
D_Ex 132 S/M	258	640	86 / 96
D_Ex 132 V	258	708	123
D_Ex 160 M/L	310	788	161 / 180
D_Ex 160 V	310	909	202
D_Ex 180M/L	345	828	217 / 238
D_Ex 180V	345	951	295
D_Ex 200L	385	940	252
D_Ex 200V	385	1065	328
D_Ex 225S	435	1025	312
D_Ex 225M-2	435	995	377
D_Ex 225M	435	1025	392
D_Ex 225V	435	1118	452
D_Ex 250M-2	491	Auf Anfrage	487
D_Ex 250M	491	Auf Anfrage	482
D_Ex 280S-2	537	Auf Anfrage	652
D_Ex 280S	537	Auf Anfrage	612
D_Ex 280M-2	537	Auf Anfrage	702
D_Ex 280M	537	Auf Anfrage	687



DEx 315S-2	617	Auf Anfrage	822
DEx 315S	617	Auf Anfrage	822
DEx 315M-2	617	Auf Anfrage	932
DEx 315M	617	Auf Anfrage	932
DEx 315M-20	617	Auf Anfrage	1242
DEx 315M0	617	Auf Anfrage	1242
DEx 315L-2	617	Auf Anfrage	1382
DEx 315L	617	Auf Anfrage	1382

Ex-geschützte Drehstrommotoren in Sonderausführung: Kabelanschluss

Baugröße: 63 - 225 / Kühlart: IC411 / Temperaturklasse T1 bis T4 / Optional können die Motoren der Bg.63-225 mit direkten Kabelanschluss anstatt mit Klemmenkasten geliefert werden (Kabellänge nach Kundenwunsch)

Änderungen vorbehalten

Туре	L	Н	Gewicht
			(4pol - B3)
			[ca. in kg]
D_Ex 63 K/L	238	112	9 / 10
D_Ex 71 K/L	271	112	11 / 12
D_Ex 80 K/L	317	126	20 / 22
D_Ex 80 V	347	126	25
D_Ex 90 S/L	360	135	28 / 31
D_Ex 90 V	405	135	37
D_Ex 100 LA/LB	416	142	38 / 42
D_Ex 100 V	486	142	54
D_Ex 112 M	438	154	56
D_Ex 112 V	498	154	74
D_Ex 132 S/M	534	179	80 / 89
D_Ex 132 V	602	179	116
D_Ex 160 M/L	667	211	147 / 166
D_Ex 160 V	788	211	194
D_Ex 180M/L	704	256	203 / 224
D_Ex 180V	827	256	281
D_Ex 200L	790	288	238
D_Ex 200V	915	288	314
D_Ex 225S	882	308	298
D_Ex 225M-2	852	308	363
D_Ex 225M	852	308	378
D_Ex 225V	975	308	438